Fixed classes and new help for KNNClassifier/Regressor

nix
Owen Green 6 years ago
parent 9d139ba7c8
commit ae86d967a7

@ -1,18 +1,27 @@
FluidKNNClassifier : FluidManipulationClient {
*new {|server|
var uid = UniqueID.next;
^super.new(server,uid)!?{|inst|inst.init(uid);inst}
}
init {|uid|
id = uid;
}
fit{|dataset, labelset, action|
this.pr_sendMsg(\fit,[dataset.asString, labelset.asString], action);
this.prSendMsg(\fit,[dataset.asSymbol, labelset.asSymbol], action);
}
predict{ |dataset, labelset, k, action|
this.pr_sendMsg(\predict,
[dataset.asString, labelset.asString, k],
action, [string(FluidMessageResponse,_,_)]
);
predict{ |dataset, labelset, k, uniform = 0, action|
this.prSendMsg(\predict,
[dataset.asSymbol, labelset.asSymbol, k, uniform],
action);
}
predictPoint { |buffer, k, action|
this.pr_sendMsg(\predictPoint,
[buffer.asUGenInput, k], action,
predictPoint { |buffer, k, uniform = 0, action|
this.prSendMsg(\predictPoint,
[buffer.asUGenInput, k,uniform], action,
[number(FluidMessageResponse,_,_)]
);
}

@ -1,20 +1,29 @@
FluidKNNRegressor : FluidManipulationClient {
*new {|server|
var uid = UniqueID.next;
^super.new(server,uid)!?{|inst|inst.init(uid);inst}
}
init {|uid|
id = uid;
}
fit{|sourceDataset, targetDataset, action|
this.pr_sendMsg(\fit,
[sourceDataset.asString, targetDataset.asString],
this.prSendMsg(\fit,
[sourceDataset.asSymbol, targetDataset.asSymbol],
action
);
}
predict{ |sourceDataset, targetDataset, k, action|
this.pr_sendMsg(\predict,
[sourceDataset.asString, targetDataset.asString, k],
action,
[string(FluidMessageResponse,_,_)]);
predict{ |sourceDataset, targetDataset, k, uniform = 0, action|
this.prSendMsg(\predict,
[sourceDataset.asSymbol, targetDataset.asSymbol, k, uniform],
action);
}
predictPoint { |buffer, k, action|
this.pr_sendMsg(\predictPoint, [buffer.asUGenInput, k], action,
predictPoint { |buffer, k, uniform = 0, action|
this.prSendMsg(\predictPoint, [buffer.asUGenInput, k,uniform], action,
[number(FluidMessageResponse,_,_)]);
}
}

@ -0,0 +1,161 @@
TITLE:: FluidKNNClassifier
summary:: Classify data with K Nearest Neighbours
categories:: Classification, KNN
related:: Classes/FluidKNNRegressor, Classes/FluidDataSet, Classes/FluidLabelSet
DESCRIPTION::
CLASSMETHODS::
METHOD:: new
Create a new KNNClassifier
ARGUMENT:: server
The server to make the model on
INSTANCEMETHODS::
METHOD:: fit
Fit the model to a source link::Classes/FluidDataSet:: and a target link::Classes/FluidLabelSet:: . These need to be the sime size
ARGUMENT:: dataset
Source data
ARGUMENT:: labelset
Labels for the source data
ARGUMENT:: action
Run when done
METHOD:: predict
Given a fitted model, predict labels for a link::Classes/FluidDataSet:: and write these to a link::Classes/FluidLabelSet::
ARGUMENT:: dataset
data to predict labels for
ARGUMENT:: labelset
place to write labels
ARGUMENT:: k
the number of neighours to consider
ARGUMENT:: uniform
true / false: whether the neighbours shold be weighted by distance
ARGUMENT:: action
Run when done
METHOD:: predictPoint
Given a fitted model, predict labels for a data point in a link::Classes/Buffer:: and return these to the caller
ARGUMENT:: buffer
A data point
ARGUMENT:: k
Number of neighbours to consider
ARGUMENT:: uniform
true / false: whether the neighbours shold be weighted by distance
ARGUMENT:: action
Run when done, passes predicted label as argument
EXAMPLES::
code::
//A dataset of example points, and a label set of corresponding labels
//+
//A dataset of test data and a labelset for predicted labels
(
~source= FluidDataSet(s,\knnclassify_help_examples);
~labels = FluidLabelSet(s,\knnclassify_help_labels);
~test = FluidDataSet(s,\knnclassify_help_test);
~mapping = FluidLabelSet(s,\knnclassify_help_mapping);
)
//Make some clumped 2D points and place into a dataset
(
~examplepoints = [[0.5,0.5],[-0.5,0.5],[0.5,-0.5],[-0.5,-0.5]];
~examplelabels = [\red,\orange,\green,\blue];
~source.clear;
~labels.clear;
~tmpbuf = Buffer.alloc(s,2);
fork{
s.sync;
~examplepoints.do{|x,i|
(""++(i+1)++"/4").postln;
~tmpbuf.setn(0,x);
~source.addPoint(i,~tmpbuf);
~labels.addLabel(i,~examplelabels[i]);
s.sync
}
}
)
//Make some random, but clustered test points
(
~testpoints = (4.collect{64.collect{(1.sum3rand) + [1,-1].choose}.clump(2)}).flatten(1) * 0.5;
~test.clear;
fork {
s.sync;
~testpoints.do{|x,i|
~tmpbuf.setn(0,x);
~test.addPoint(i,~tmpbuf);
s.sync;
if(i==(~testpoints.size - 1)){"Generated test data".postln;}
}
}
)
//Make a new KNN classifier model, fit it to the example dataset and labels, and then run preduction on the test data into our mapping label set
(
fork{
~classifier = FluidKNNClassifier(s);
s.sync;
~classifier.fit(~source,~labels);
~classifier.predict(~test, ~mapping, 1);
s.sync;
}
)
//Dims of kmeans should match dataset
~kmeans.cols
//Return labels of clustered points
(
~assignments = Array.new(~testpoints.size);
fork{
~testpoints.do{|x,i|
~mapping.getLabel(i,action:{|l|
~assignments.add(l);
});
s.sync;
if(i==(~testpoints.size - 1)){"Got assignments".postln;}
};
~assignments.postln;
}
)
//Visualise: we're hoping to see colours neatly mapped to quandrants...
(
c = IdentityDictionary();
c.add(\red->Color.red);
c.add(\blue->Color.blue);
c.add(\green->Color.green);
c.add(\orange-> Color.new255(255, 127, 0));
e = 200 * ((~examplepoints + 1) * 0.5).flatten(1).unlace;
d = ((~testpoints + 1) * 0.5).flatten(1).unlace;
// d = [20.collect{1.0.rand}, 20.collect{1.0.rand}];
w = Window("scatter", Rect(128, 64, 200, 200));
~colours = [Color.blue,Color.red,Color.green,Color.magenta];
w.drawFunc = {
Pen.use {
e[0].size.do{|i|
var r = Rect(e[0][i],e[1][i],10,10);
Pen.fillColor = c[~examplelabels[i]];
Pen.fillOval(r);
};
d[0].size.do{|i|
var x = (d[0][i]*200);
var y = (d[1][i]*200);
var r = Rect(x,y,5,5);
Pen.fillColor = c[~assignments[i].asSymbol].alpha_(0.3);
Pen.fillOval(r);
}
}
};
w.refresh;
w.front;
)
::

@ -0,0 +1,108 @@
TITLE:: FluidKNNRegressor
summary:: Regression with K Nearest Neighbours
categories:: Regression
related:: Classes/FluidKNNClassifier, Classes/FluidDataSet
DESCRIPTION::
CLASSMETHODS::
METHOD:: new
Create a new KNN regressor on the server
ARGUMENT:: server
The server to run this model on.
INSTANCEMETHODS::
METHOD:: fit
Map a source link::Classes/FluidDataSet:: to a target; they must be the same size, but can have different dimesionality
ARGUMENT:: sourceDataset
Source data
ARGUMENT:: targetDataset
Target data
ARGUMENT:: action
Run when done
METHOD:: predict
Apply learned mapping to a link::Classes/FluidDataSet:: and write to an output dataset
ARGUMENT:: sourceDataset
data to regress
ARGUMENT:: targetDataset
output data
ARGUMENT:: k
number of neigbours to consider in mapping, min 1
ARGUMENT:: uniform
Whether to weight neighbours by distance when producing new point
ARGUMENT:: action
Run when done
METHOD:: predictPoint
Apply learned mapping to a data point in a link::Classes/Buffer::
ARGUMENT:: buffer
data point
ARGUMENT:: k
number of neigbours to consider in mapping, min 1
ARGUMENT:: uniform
Whether to weight neighbours by distance when producing new point
ARGUMENT:: action
Run when done
EXAMPLES::
code::
//Make a simple mapping between a ramp and a sine cycle, test with an exponentional ramp
(
~source = FluidDataSet(s,\knn_regress_src);
~target = FluidDataSet(s,\knn_regress_tgt);
~test = FluidDataSet(s,\knn_regress_test);
~output = FluidDataSet(s,\knn_regress_out);
~tmpbuf = Buffer.alloc(s,1);
)
//Make source, target and test data
(
~sourcedata = 128.collect{|i|i/128};
~targetdata = 128.collect{|i| sin(2*pi*i/128) };
fork{
128.do{ |i|
((i + 1).asString ++ "/128").postln;
~tmpbuf.setn(0,i/128);
~source.addPoint(i,~tmpbuf);
s.sync;
~tmpbuf.setn(0,sin(2*pi*i/128));
~target.addPoint(i,~tmpbuf);
s.sync;
~tmpbuf.setn(0,(i/128)**2);
~test.addPoint(i,~tmpbuf);
s.sync;
if(i==127){"Source, target and test generated".postln};
}
}
)
// Now make a regressor and fit it to the source and target, and predict against test
//grab the output data whilst we're at it, so we can inspect
(
~outputdata = Array(128);
fork{
~regressor = FluidKNNRegressor(s);
s.sync;
~regressor.fit(~source,~target);
~regressor.predict(~test,~output,1);
s.sync;
128.do{|i|
~output.getPoint(i,~tmpbuf,{
~tmpbuf.loadToFloatArray(action:{|x|
~outputdata.addAll(x)
})
});
s.sync;
if(i==127){"Model fitted, output generated".postln};
}
}
)
//We should see a single cycle of a chirp
~outputdata.plot;
::
Loading…
Cancel
Save