You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
162 lines
3.9 KiB
Plaintext
162 lines
3.9 KiB
Plaintext
TITLE:: FluidKNNClassifier
|
|
summary:: Classify data with K Nearest Neighbours
|
|
categories:: Classification, KNN
|
|
related:: Classes/FluidKNNRegressor, Classes/FluidDataSet, Classes/FluidLabelSet
|
|
|
|
DESCRIPTION::
|
|
|
|
CLASSMETHODS::
|
|
|
|
METHOD:: new
|
|
Create a new KNNClassifier
|
|
ARGUMENT:: server
|
|
The server to make the model on
|
|
|
|
INSTANCEMETHODS::
|
|
|
|
METHOD:: fit
|
|
Fit the model to a source link::Classes/FluidDataSet:: and a target link::Classes/FluidLabelSet:: . These need to be the sime size
|
|
ARGUMENT:: dataset
|
|
Source data
|
|
ARGUMENT:: labelset
|
|
Labels for the source data
|
|
ARGUMENT:: action
|
|
Run when done
|
|
|
|
METHOD:: predict
|
|
Given a fitted model, predict labels for a link::Classes/FluidDataSet:: and write these to a link::Classes/FluidLabelSet::
|
|
ARGUMENT:: dataset
|
|
data to predict labels for
|
|
ARGUMENT:: labelset
|
|
place to write labels
|
|
ARGUMENT:: k
|
|
the number of neighours to consider
|
|
ARGUMENT:: uniform
|
|
true / false: whether the neighbours shold be weighted by distance
|
|
ARGUMENT:: action
|
|
Run when done
|
|
|
|
METHOD:: predictPoint
|
|
Given a fitted model, predict labels for a data point in a link::Classes/Buffer:: and return these to the caller
|
|
ARGUMENT:: buffer
|
|
A data point
|
|
ARGUMENT:: k
|
|
Number of neighbours to consider
|
|
ARGUMENT:: uniform
|
|
true / false: whether the neighbours shold be weighted by distance
|
|
ARGUMENT:: action
|
|
Run when done, passes predicted label as argument
|
|
|
|
EXAMPLES::
|
|
|
|
code::
|
|
//A dataset of example points, and a label set of corresponding labels
|
|
//+
|
|
//A dataset of test data and a labelset for predicted labels
|
|
(
|
|
~source= FluidDataSet(s,\knnclassify_help_examples);
|
|
~labels = FluidLabelSet(s,\knnclassify_help_labels);
|
|
~test = FluidDataSet(s,\knnclassify_help_test);
|
|
~mapping = FluidLabelSet(s,\knnclassify_help_mapping);
|
|
)
|
|
|
|
//Make some clumped 2D points and place into a dataset
|
|
(
|
|
~examplepoints = [[0.5,0.5],[-0.5,0.5],[0.5,-0.5],[-0.5,-0.5]];
|
|
~examplelabels = [\red,\orange,\green,\blue];
|
|
~source.clear;
|
|
~labels.clear;
|
|
~tmpbuf = Buffer.alloc(s,2);
|
|
fork{
|
|
s.sync;
|
|
~examplepoints.do{|x,i|
|
|
(""++(i+1)++"/4").postln;
|
|
~tmpbuf.setn(0,x);
|
|
~source.addPoint(i,~tmpbuf);
|
|
~labels.addLabel(i,~examplelabels[i]);
|
|
s.sync
|
|
}
|
|
}
|
|
)
|
|
|
|
//Make some random, but clustered test points
|
|
(
|
|
~testpoints = (4.collect{64.collect{(1.sum3rand) + [1,-1].choose}.clump(2)}).flatten(1) * 0.5;
|
|
~test.clear;
|
|
fork {
|
|
s.sync;
|
|
~testpoints.do{|x,i|
|
|
~tmpbuf.setn(0,x);
|
|
~test.addPoint(i,~tmpbuf);
|
|
s.sync;
|
|
if(i==(~testpoints.size - 1)){"Generated test data".postln;}
|
|
}
|
|
}
|
|
)
|
|
|
|
//Make a new KNN classifier model, fit it to the example dataset and labels, and then run preduction on the test data into our mapping label set
|
|
(
|
|
fork{
|
|
~classifier = FluidKNNClassifier(s);
|
|
s.sync;
|
|
~classifier.fit(~source,~labels);
|
|
~classifier.predict(~test, ~mapping, 1);
|
|
s.sync;
|
|
}
|
|
)
|
|
|
|
//Dims of kmeans should match dataset
|
|
~kmeans.cols
|
|
|
|
//Return labels of clustered points
|
|
(
|
|
~assignments = Array.new(~testpoints.size);
|
|
fork{
|
|
~testpoints.do{|x,i|
|
|
~mapping.getLabel(i,action:{|l|
|
|
~assignments.add(l);
|
|
});
|
|
s.sync;
|
|
if(i==(~testpoints.size - 1)){"Got assignments".postln;}
|
|
};
|
|
~assignments.postln;
|
|
}
|
|
)
|
|
|
|
//Visualise: we're hoping to see colours neatly mapped to quandrants...
|
|
(
|
|
c = IdentityDictionary();
|
|
|
|
c.add(\red->Color.red);
|
|
c.add(\blue->Color.blue);
|
|
c.add(\green->Color.green);
|
|
c.add(\orange-> Color.new255(255, 127, 0));
|
|
|
|
e = 200 * ((~examplepoints + 1) * 0.5).flatten(1).unlace;
|
|
d = ((~testpoints + 1) * 0.5).flatten(1).unlace;
|
|
// d = [20.collect{1.0.rand}, 20.collect{1.0.rand}];
|
|
w = Window("scatter", Rect(128, 64, 200, 200));
|
|
~colours = [Color.blue,Color.red,Color.green,Color.magenta];
|
|
w.drawFunc = {
|
|
Pen.use {
|
|
e[0].size.do{|i|
|
|
var r = Rect(e[0][i],e[1][i],10,10);
|
|
Pen.fillColor = c[~examplelabels[i]];
|
|
Pen.fillOval(r);
|
|
};
|
|
d[0].size.do{|i|
|
|
var x = (d[0][i]*200);
|
|
var y = (d[1][i]*200);
|
|
var r = Rect(x,y,5,5);
|
|
Pen.fillColor = c[~assignments[i].asSymbol].alpha_(0.3);
|
|
Pen.fillOval(r);
|
|
}
|
|
}
|
|
};
|
|
w.refresh;
|
|
w.front;
|
|
)
|
|
|
|
|
|
::
|