more verbose KDTree KR example and AE example

nix
Pierre Alexandre Tremblay 6 years ago
parent 21daae30ed
commit 31d8150946

@ -0,0 +1,78 @@
s.reboot;
//Preliminaries: we want some audio, a couple of FluidDataSets, some Buffers
(
~raw = FluidDataSet(s,\MLP40);
~retrieved = FluidDataSet(s,\ae2);
~audio = Buffer.read(s,File.realpath(FluidBufMelBands.class.filenameSymbol).dirname +/+ "../AudioFiles/Tremblay-ASWINE-ScratchySynth-M.wav");
~melfeatures = Buffer.new(s);
~stats = Buffer.alloc(s, 7, 40);
~datapoint = Buffer.alloc(s, 40);
~mlp = FluidMLPRegressor(s,[10,2,10],1,1,2,10000,0.01,0.1,10,0);
)
// process the melbands
FluidBufMelBands.process(s,~audio, features: ~melfeatures,action: {\done.postln;});
~raw.free
// Divide the time series in 100, and take the mean of each segment and add this as a point to
// the 'raw' FluidDataSet
(
{
var trig = LocalIn.kr(1, 1);
var buf = LocalBuf(40, 1);
var count = PulseCount.kr(trig) - 1;
var chunkLen = (~melfeatures.numFrames / 100).asInteger;
var stats = FluidBufStats.kr(source: ~melfeatures, startFrame: count * chunkLen, numFrames: chunkLen, stats: ~stats, trig: trig);
var rd = BufRd.kr(40, ~stats, DC.kr(0), 0, 1);
var bufWr, dsWr;
40.do{|i|
bufWr = BufWr.kr(rd[i], buf, DC.kr(i));
};
dsWr = FluidDataSetWr.kr(\MLP40, buf: buf, trig: Done.kr(stats));
LocalOut.kr( Done.kr(dsWr));
FreeSelf.kr(count - 99);
}.play;
)
// wait for the post window to acknoledge the job is done.
//we can then run the AE - the server might become yellow :)
~mlp.fit(~raw,~raw,{|x|x.postln;});
//we can then retrieve the hidden layer #2
~mlp.predict(~raw,~retrieved)
//check the structure of retrieved
~retrieved.print
//let's normalise it for display
~normData = FluidDataSet(s,\ae2N);
~reducedarray = Array.new(100);
~normalizer = FluidNormalize(s);
~normalizer.fitTransform(~retrieved,~normData, action:{
~normData.dump{|x| 100.do{|i|
~reducedarray.add(x["data"][i.asString])
}};
});
~normData.print
~reducedarray.postln;
//Visualise the 2D projection of our original 12D data
(
d = ~reducedarray.flatten(1).unlace.deepCollect(1, { |x| x.normalize});
w = Window("scatter", Rect(128, 64, 200, 200));
w.drawFunc = {
Pen.use {
d[0].size.do{|i|
var x = (d[0][i]*200);
var y = (d[1][i]*200);
var r = Rect(x,y,5,5);
Pen.fillColor = Color.blue;
Pen.fillOval(r);
}
}
};
w.refresh;
w.front;
)

@ -53,6 +53,7 @@ s.boot;
(
fork{
~ds = FluidDataSet.new(s,\kdtree_help_rand2d);
~dsL = FluidDataSet.new(s,\kdtree_help_indices);// for use later in KR query
d = Dictionary.with(
*[\cols -> 2,\data -> Dictionary.newFrom(
100.collect{|i| [i, [ 1.0.linrand,1.0.linrand]]}.flatten)]);
@ -62,7 +63,7 @@ fork{
)
// Make a new tree, and fit it to the DataSet
~tree = FluidKDTree(s,numNeighbours:5,lookupDataSet:~ds);
~tree = FluidKDTree(s,numNeighbours:5,lookupDataSet:~dsL);
//Fit it to the DataSet
~tree.fit(~ds);
@ -101,13 +102,26 @@ subsection:: Server Side Queries
code::
//set the buffers and busses needed
(
~inputPoint = Buffer.alloc(s,2);
~predictPoint = Buffer.alloc(s,10);
~predictPoint = Buffer.alloc(s,5);
~pitchingBus = Bus.control;
~catchingBus = Bus.control;
)
//populate the lookupDataSet
//here we populate with numbers that are in effect the indicies, but it could be anything numerical that will be returned on the server-side and would be usable on that side
(
fork{
d = Dictionary.with(
*[\cols -> 1,\data -> Dictionary.newFrom(
100.collect{|i| [i, [ i ]]}.flatten)]);
s.sync;
~dsL.load(d, {~dsL.print});
}
)
(
~tree.inBus_(~pitchingBus).outBus_(~catchingBus).inBuffer_(~inputPoint).outBuffer_(~predictPoint);

Loading…
Cancel
Save