You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
78 lines
2.3 KiB
Markdown
78 lines
2.3 KiB
Markdown
s.reboot;
|
|
//Preliminaries: we want some audio, a couple of FluidDataSets, some Buffers
|
|
(
|
|
~raw = FluidDataSet(s,\MLP40);
|
|
~retrieved = FluidDataSet(s,\ae2);
|
|
~audio = Buffer.read(s,File.realpath(FluidBufMelBands.class.filenameSymbol).dirname +/+ "../AudioFiles/Tremblay-ASWINE-ScratchySynth-M.wav");
|
|
~melfeatures = Buffer.new(s);
|
|
~stats = Buffer.alloc(s, 7, 40);
|
|
~datapoint = Buffer.alloc(s, 40);
|
|
~mlp = FluidMLPRegressor(s,[10,2,10],1,1,2,10000,0.01,0.1,10,0);
|
|
)
|
|
|
|
// process the melbands
|
|
FluidBufMelBands.process(s,~audio, features: ~melfeatures,action: {\done.postln;});
|
|
|
|
~raw.free
|
|
// Divide the time series in 100, and take the mean of each segment and add this as a point to
|
|
// the 'raw' FluidDataSet
|
|
(
|
|
{
|
|
var trig = LocalIn.kr(1, 1);
|
|
var buf = LocalBuf(40, 1);
|
|
var count = PulseCount.kr(trig) - 1;
|
|
var chunkLen = (~melfeatures.numFrames / 100).asInteger;
|
|
var stats = FluidBufStats.kr(source: ~melfeatures, startFrame: count * chunkLen, numFrames: chunkLen, stats: ~stats, trig: trig);
|
|
var rd = BufRd.kr(40, ~stats, DC.kr(0), 0, 1);
|
|
var bufWr, dsWr;
|
|
40.do{|i|
|
|
bufWr = BufWr.kr(rd[i], buf, DC.kr(i));
|
|
};
|
|
dsWr = FluidDataSetWr.kr(\MLP40, buf: buf, trig: Done.kr(stats));
|
|
LocalOut.kr( Done.kr(dsWr));
|
|
FreeSelf.kr(count - 99);
|
|
}.play;
|
|
)
|
|
// wait for the post window to acknoledge the job is done.
|
|
|
|
//we can then run the AE - the server might become yellow :)
|
|
~mlp.fit(~raw,~raw,{|x|x.postln;});
|
|
|
|
//we can then retrieve the hidden layer #2
|
|
~mlp.predict(~raw,~retrieved)
|
|
|
|
//check the structure of retrieved
|
|
~retrieved.print
|
|
|
|
//let's normalise it for display
|
|
~normData = FluidDataSet(s,\ae2N);
|
|
~reducedarray = Array.new(100);
|
|
~normalizer = FluidNormalize(s);
|
|
~normalizer.fitTransform(~retrieved,~normData, action:{
|
|
~normData.dump{|x| 100.do{|i|
|
|
~reducedarray.add(x["data"][i.asString])
|
|
}};
|
|
});
|
|
|
|
~normData.print
|
|
~reducedarray.postln;
|
|
|
|
|
|
//Visualise the 2D projection of our original 12D data
|
|
(
|
|
d = ~reducedarray.flatten(1).unlace.deepCollect(1, { |x| x.normalize});
|
|
w = Window("scatter", Rect(128, 64, 200, 200));
|
|
w.drawFunc = {
|
|
Pen.use {
|
|
d[0].size.do{|i|
|
|
var x = (d[0][i]*200);
|
|
var y = (d[1][i]*200);
|
|
var r = Rect(x,y,5,5);
|
|
Pen.fillColor = Color.blue;
|
|
Pen.fillOval(r);
|
|
}
|
|
}
|
|
};
|
|
w.refresh;
|
|
w.front;
|
|
) |