cool math shit, more to explore. simplex variations.

master
Leo Coogan 1 month ago
parent e67f755b77
commit fc7db7ac26
Signed by: lcoogan
GPG Key ID: 54DBD17B0D75ABB0

@ -0,0 +1,104 @@
// Author @patriciogv - 2015 - patriciogonzalezvivo.com
// Modified to use Brusselator reaction-diffusion system
#ifdef GL_ES
precision mediump float;
#endif
uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;
// Brusselator parameters
const float A = 1.0;
const float B = 2.5;
const float Du = 0.1; // Diffusion rate for u
const float Dv = 0.05; // Diffusion rate for v
vec2 skew (vec2 st) {
vec2 r = vec2(0.0);
r.x = 1.1547*st.x;
r.y = st.y+0.5*r.x;
return r;
}
vec3 simplexGrid (vec2 st) {
vec3 xyz = vec3(0.0);
vec2 p = fract(skew(st));
if (p.x > p.y) {
xyz.xy = 1.0-vec2(p.x,p.y-p.x);
xyz.z = p.y;
} else {
xyz.yz = 1.0-vec2(p.x-p.y,p.y);
xyz.x = p.x;
}
return fract(xyz);
}
// Brusselator reaction function
vec2 brusselator(vec2 uv, float time) {
float scale = 10.0;
vec2 st = uv * scale;
// Initialize concentrations
float u = 0.5 + 0.3 * sin(st.x * 3.14159) * cos(st.y * 3.14159);
float v = 0.25 + 0.2 * cos(st.x * 2.0 * 3.14159) * sin(st.y * 2.0 * 3.14159);
// Multiple iterations for the reaction-diffusion
for(int i = 0; i < 5; i++) {
// Brusselator reaction terms
float reaction_u = A - (B + 1.0) * u + u * u * v;
float reaction_v = B * u - u * u * v;
// Simple Laplacian (diffusion)
float laplacian_u = sin(st.x * 6.28318 + time) * 0.1 +
sin(st.y * 6.28318 + time * 0.7) * 0.1;
float laplacian_v = cos(st.x * 6.28318 + time * 0.5) * 0.1 +
cos(st.y * 6.28318 + time * 1.2) * 0.1;
// Update concentrations (Euler integration)
u += 0.1 * (reaction_u + Du * laplacian_u);
v += 0.1 * (reaction_v + Dv * laplacian_v);
// Clamp to reasonable values
u = clamp(u, 0.0, 2.0);
v = clamp(v, 0.0, 2.0);
// Advance time slightly for each iteration
time += 0.05;
}
return vec2(u, v);
}
void main() {
vec2 st = gl_FragCoord.xy/u_resolution.xy;
vec3 color = vec3(0.0);
// Get Brusselator concentrations
vec2 bruss = brusselator(st, u_time * 0.5);
// Scale the space to see the grid
st *= 10.;
// Use Brusselator concentrations to modulate the grid
// u concentration affects red channel, v affects green
float u_mod = bruss.x * 2.0;
float v_mod = bruss.y * 2.0;
// Create dynamic grid using Brusselator patterns
vec2 modulated_st = st + vec2(u_mod * 0.5, v_mod * 0.3);
// Subdivide the grid into equilateral triangles
// using Brusselator values to animate the grid
color = simplexGrid(modulated_st * (1.0 + bruss.x * 0.5));
// Add some color from the Brusselator concentrations
color.r += bruss.x * 0.3;
color.g += bruss.y * 0.2;
color.b += (1.0 - bruss.x) * 0.2;
gl_FragColor = vec4(color, 1.0);
}

@ -0,0 +1,104 @@
// Author @patriciogv - 2015 - patriciogonzalezvivo.com
// Modified to use Gingerbread Man chaotic map
#ifdef GL_ES
precision mediump float;
#endif
uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;
vec2 skew (vec2 st) {
vec2 r = vec2(0.0);
r.x = 1.1547*st.x;
r.y = st.y+0.5*r.x;
return r;
}
vec3 simplexGrid (vec2 st) {
vec3 xyz = vec3(0.0);
vec2 p = fract(skew(st));
if (p.x > p.y) {
xyz.xy = 1.0-vec2(p.x,p.y-p.x);
xyz.z = p.y;
} else {
xyz.yz = 1.0-vec2(p.x-p.y,p.y);
xyz.x = p.x;
}
return fract(xyz);
}
// Gingerbread Man map
vec2 gingerbreadMan(vec2 pos, float time) {
// Classic Gingerbread Man parameters with time modulation
float a = 0.9 + 0.1 * sin(time * 0.3);
// Multiple iterations for chaotic behavior
vec2 p = pos;
for(int i = 0; i < 8; i++) {
float x_new = 1.0 - a * p.y + abs(p.x);
float y_new = p.x;
p = vec2(x_new, y_new);
}
return p;
}
// Alternative Gingerbread Man with different parameters
vec2 gingerbreadMan2(vec2 pos, float time) {
// More complex version with time-varying parameters
float a = 0.8 + 0.2 * sin(time * 0.5);
float b = 1.2 + 0.3 * cos(time * 0.7);
vec2 p = pos;
for(int i = 0; i < 6; i++) {
float x_new = b * (1.0 + 2.0 * a) - a * p.y + abs(p.x);
float y_new = p.x;
p = vec2(x_new, y_new);
// Add some noise for extra complexity
p += 0.01 * sin(p * 10.0 + time);
}
return p;
}
void main() {
vec2 st = gl_FragCoord.xy/u_resolution.xy;
vec3 color = vec3(0.0);
// Scale and center for Gingerbread Man
vec2 ginger_st = (st - 0.5) * 4.0;
// Apply Gingerbread Man map
vec2 ginger_pos = gingerbreadMan(ginger_st, u_time);
// Also get the alternative version
vec2 ginger_pos2 = gingerbreadMan2(ginger_st, u_time * 1.3);
// Scale the space to see the grid
st *= 8.0;
// Use Gingerbread Man output to modulate the simplex grid
vec2 modulated_st = st + ginger_pos * 0.3;
// Create the simplex grid with chaotic modulation
color = simplexGrid(modulated_st);
// Add color based on Gingerbread Man positions
color.r += 0.3 * (0.5 + 0.5 * sin(length(ginger_pos) * 5.0 + u_time));
color.g += 0.2 * (0.5 + 0.5 * cos(ginger_pos.x * 3.0 + u_time * 2.0));
color.b += 0.4 * (0.5 + 0.5 * sin(ginger_pos2.y * 4.0 + u_time * 1.5));
// Enhance contrast
color = mix(color, color * color, 0.3);
// Vignette effect
float vignette = 1.0 - length(st * 0.1);
color *= vignette * vignette;
gl_FragColor = vec4(color, 1.0);
}

@ -0,0 +1,50 @@
// Author @patriciogv - 2015 - patriciogonzalezvivo.com
#ifdef GL_ES
precision mediump float;
#endif
uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;
vec2 skew (vec2 st) {
vec2 r = vec2(0.0);
r.x = 1.1547*st.x;
r.y = st.y+0.5*r.x;
return r;
}
vec3 simplexGrid (vec2 st) {
vec3 xyz = vec3(0.0);
vec2 p = fract(skew(st));
if (p.x > p.y) {
xyz.xy = 1.0-vec2(p.x,p.y-p.x);
xyz.z = p.y;
} else {
xyz.yz = 1.0-vec2(p.x-p.y,p.y);
xyz.x = p.x;
}
return fract(xyz);
}
void main() {
vec2 st = gl_FragCoord.xy/u_resolution.xy;
vec3 color = vec3(0.0);
// Scale the space to see the grid
st *= 10.;
// Show the 2D grid
color.rg = fract(st);
// Skew the 2D grid
// color.rg = fract(skew(st));
// Subdivide the grid into to equilateral triangles
color = simplexGrid(st);
gl_FragColor = vec4(color,1.0);
}
Loading…
Cancel
Save