|
|
|
@ -107,7 +107,7 @@ w.front;
|
|
|
|
|
|
|
|
|
|
|
|
::
|
|
|
|
::
|
|
|
|
|
|
|
|
|
|
|
|
STRONG::A more colourful example::
|
|
|
|
STRONG::A more colourful example exploring oversampling::
|
|
|
|
|
|
|
|
|
|
|
|
code::
|
|
|
|
code::
|
|
|
|
|
|
|
|
|
|
|
|
@ -178,6 +178,9 @@ w.front;
|
|
|
|
});
|
|
|
|
});
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// We can check the dimensions of the yielded grid by dumping the normalisation.The grid coordinates are zero-counting
|
|
|
|
|
|
|
|
~normalizer.dump{|x|x["data_max"].postln}
|
|
|
|
|
|
|
|
|
|
|
|
// This looks ok, but let's improve it with oversampling
|
|
|
|
// This looks ok, but let's improve it with oversampling
|
|
|
|
(
|
|
|
|
(
|
|
|
|
~grid.oversample_(3).fitTransform(~reduced,~gridified,action:{"Gridded Output".postln;
|
|
|
|
~grid.oversample_(3).fitTransform(~reduced,~gridified,action:{"Gridded Output".postln;
|
|
|
|
@ -191,4 +194,8 @@ w.front;
|
|
|
|
});
|
|
|
|
});
|
|
|
|
});
|
|
|
|
});
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Again, checking the normalisation dump to check the maxima of each dimension
|
|
|
|
|
|
|
|
~normalizer.dump{|x|x["data_max"].postln}
|
|
|
|
|
|
|
|
|
|
|
|
::
|
|
|
|
::
|
|
|
|
|