Better safety, worse contention

Hold on to locks more strictly. Improves safety under load, but is 
slower.
nix
Owen Green 5 years ago
parent 5956e97925
commit dcdc7f8f31

@ -9,6 +9,8 @@
#include <clients/common/FluidBaseClient.hpp>
#include <data/FluidMeta.hpp>
#include <SC_PlugIn.hpp>
#include <immintrin.h>
#include <mutex>
#include <scsynthsend.h>
#include <unordered_map>
@ -33,138 +35,119 @@ namespace impl {
/// Instance cache
struct CacheEntry
{
CacheEntry(const Params& p):mParams{p},mClient{mParams}
{}
CacheEntry(const Params& p) : mParams{p}, mClient{mParams} {}
Params mParams;
Client mClient;
bool mDone{false};
std::atomic<bool> mDone{false};
};
using CacheEntryPointer = std::shared_ptr<CacheEntry>;
using WeakCacheEntryPointer = std::weak_ptr<CacheEntry>; //could use weak_type in 17
using WeakCacheEntryPointer =
std::weak_ptr<CacheEntry>; // could use weak_type in 17
public:
using Cache = std::unordered_map<index, CacheEntryPointer>;
static Cache mCache;
private:
static bool isNull(WeakCacheEntryPointer const& weak) {
return !weak.owner_before(WeakCacheEntryPointer{}) && !WeakCacheEntryPointer{}.owner_before(weak);
static bool isNull(WeakCacheEntryPointer const& weak)
{
return !weak.owner_before(WeakCacheEntryPointer{}) &&
!WeakCacheEntryPointer{}.owner_before(weak);
}
// https://rigtorp.se/spinlock/
struct Spinlock {
struct Spinlock
{
std::atomic<bool> lock_ = {0};
void lock() noexcept {
for (;;) {
void lock() noexcept
{
for (;;)
{
// Optimistically assume the lock is free on the first try
if (!lock_.exchange(true, std::memory_order_acquire)) {
return;
}
if (!lock_.exchange(true, std::memory_order_acquire)) { return; }
// Wait for lock to be released without generating cache misses
while (lock_.load(std::memory_order_relaxed)) {
// Issue X86 PAUSE or ARM YIELD instruction to reduce contention between
// hyper-threads
//__builtin_ia32_pause();
while (lock_.load(std::memory_order_relaxed))
{
// Issue X86 PAUSE or ARM YIELD instruction to reduce contention
// between hyper-threads
_mm_pause();
}
}
}
bool tryLock() noexcept {
bool try_lock() noexcept
{
// First do a relaxed load to check if lock is free in order to prevent
// unnecessary cache misses if someone does while(!try_lock())
return !lock_.load(std::memory_order_relaxed) &&
!lock_.exchange(true, std::memory_order_acquire);
}
void unlock() noexcept {
lock_.store(false, std::memory_order_release);
}
};
//RAII for above
struct ScopedSpinlock
{
ScopedSpinlock(Spinlock& _l) noexcept: mLock{_l}
{
mLock.lock();
}
~ScopedSpinlock() { mLock.unlock(); }
private:
Spinlock& mLock;
void unlock() noexcept { lock_.store(false, std::memory_order_release); }
};
static Spinlock mSpinlock;
using ScopedSpinLock = std::unique_lock<Spinlock>;
// shouldn't be called without at least *thinking* about getting spin lock first
static inline WeakCacheEntryPointer unsafeGet(index id)
// shouldn't be called without at least *thinking* about getting spin lock
// first
static WeakCacheEntryPointer unsafeGet(index id)
{
auto lookup = mCache.find(id);
return lookup == mCache.end() ? WeakCacheEntryPointer() : lookup->second;
}
public:
static WeakCacheEntryPointer get(index id)
{
ScopedSpinlock{mSpinlock};
return unsafeGet(id);
}
static WeakCacheEntryPointer tryGet(index id)
{
if(mSpinlock.tryLock())
{
auto ret = unsafeGet(id);
mSpinlock.unlock();
return ret;
}
return WeakCacheEntryPointer{};
}
static WeakCacheEntryPointer get(index id) { return unsafeGet(id); }
static WeakCacheEntryPointer add(index id, const Params& params)
{
ScopedSpinlock{mSpinlock};
if (isNull(get(id)))
{
auto result = mCache.emplace(id,
std::make_shared<CacheEntry>(params));
auto result = mCache.emplace(id, std::make_shared<CacheEntry>(params));
return result.second ? (result.first)->second : WeakCacheEntryPointer(); //sob
return result.second ? (result.first)->second
: WeakCacheEntryPointer(); // sob
}
else // client has screwed up
{
std::cout << "ERROR: " << Wrapper::getName() << " ID " << id << " already in use\n";
std::cout << "ERROR: " << Wrapper::getName() << " ID " << id
<< " already in use\n";
return {};
}
}
static void remove(index id)
{
ScopedSpinlock{mSpinlock};
mCache.erase(id);
}
static void remove(index id) { mCache.erase(id); }
static void printNotFound(index id)
{
std::cout << "ERROR: " << Wrapper::getName() << " no instance with ID " << id << std::endl;
std::cout << "ERROR: " << Wrapper::getName() << " no instance with ID "
<< id << std::endl;
}
private:
static InterfaceTable* getInterfaceTable() { return Wrapper::getInterfaceTable() ;}
static InterfaceTable* getInterfaceTable()
{
return Wrapper::getInterfaceTable();
}
template <size_t N, typename T>
using ParamsFromOSC = typename ClientParams<Wrapper>::template Setter<sc_msg_iter, N, T>;
using ParamsFromOSC =
typename ClientParams<Wrapper>::template Setter<sc_msg_iter, N, T>;
template <size_t N, typename T>
using ParamsFromSynth = typename ClientParams<Wrapper>::template Setter<impl::FloatControlsIter, N, T>;
using ParamsFromSynth =
typename ClientParams<Wrapper>::template Setter<impl::FloatControlsIter,
N, T>;
struct NRTCommand
{
NRTCommand(World*, sc_msg_iter* args, void* replyAddr, bool consumeID = true)
NRTCommand(World*, sc_msg_iter* args, void* replyAddr,
bool consumeID = true)
{
auto count = args->count;
auto pos = args->rdpos;
@ -177,8 +160,7 @@ namespace impl {
args->rdpos = pos;
}
if(replyAddr)
mReplyAddress = copyReplyAddress(replyAddr);
if (replyAddr) mReplyAddress = copyReplyAddress(replyAddr);
}
~NRTCommand()
@ -209,7 +191,8 @@ namespace impl {
packet.addi(success);
packet.addi(static_cast<int>(mID));
SendReply(mReplyAddress,packet.data(), static_cast<int>(packet.size()));
SendReply(mReplyAddress, packet.data(),
static_cast<int>(packet.size()));
}
}
// protected:
@ -223,12 +206,12 @@ namespace impl {
: NRTCommand{world, args, replyAddr, !IsNamedShared_v<Client>},
mParams{Client::getParameterDescriptors()}
{
mParams.template setParameterValuesRT<ParamsFromOSC>(nullptr, world, *args);
mParams.template setParameterValuesRT<ParamsFromOSC>(nullptr, world,
*args);
}
CommandNew(index id, World*, FloatControlsIter& args, Unit* x)
:NRTCommand{id},
mParams{Client::getParameterDescriptors()}
: NRTCommand{id}, mParams{Client::getParameterDescriptors()}
{
mParams.template setParameterValuesRT<ParamsFromSynth>(nullptr, x, args);
}
@ -242,7 +225,7 @@ namespace impl {
bool stage2(World* w)
{
// auto entry = ;
ScopedSpinLock lock{mSpinlock};
Result constraintsRes = validateParameters(mParams);
@ -250,10 +233,12 @@ namespace impl {
mResult = (!isNull(add(NRTCommand::mID, mParams)));
//Sigh. The cache entry above has both the client instance and main params instance.
// The client is linked to the params by reference; I've not got the in-place constrction
// working properly so that params are in their final resting place by the time we make the client
// so (for) now we need to manually repoint the client to the correct place. Or badness.
// Sigh. The cache entry above has both the client instance and main
// params instance.
// The client is linked to the params by reference; I've not got the
// in-place constrction working properly so that params are in their final
// resting place by the time we make the client so (for) now we need to
// manually repoint the client to the correct place. Or badness.
if (mResult)
{
auto ptr = get(NRTCommand::mID).lock();
@ -279,9 +264,9 @@ namespace impl {
if (auto ptr = get(id).lock())
{
auto& client = ptr->mClient;
if(!client.synchronous() && client.state() == ProcessState::kProcessing)
std::cout << Wrapper::getName()
<< ": Processing cancelled"
if (!client.synchronous() &&
client.state() == ProcessState::kProcessing)
std::cout << Wrapper::getName() << ": Processing cancelled"
<< std::endl;
}
}
@ -297,12 +282,12 @@ namespace impl {
bool stage2(World*)
{
ScopedSpinLock lock(mSpinlock);
cancelCheck(IsRTQueryModel_t(), NRTCommand::mID);
remove(NRTCommand::mID);
NRTCommand::sendReply(name(), true);
return true;
}
};
@ -321,6 +306,7 @@ namespace impl {
{
// std::cout << "In Async completion\n";
ScopedSpinLock lock{mSpinlock};
if (auto ptr = get(NRTCommand::mID).lock())
{
Result r;
@ -331,10 +317,9 @@ namespace impl {
{
if (r.status() == Result::Status::kCancelled)
{
std::cout << Wrapper::getName()
<< ": Processing cancelled"
std::cout << Wrapper::getName() << ": Processing cancelled"
<< std::endl;
ptr->mDone = true;
ptr->mDone.store(true, std::memory_order_relaxed);
return false;
}
@ -345,11 +330,12 @@ namespace impl {
Wrapper::printResult(world, r);
if (r.status() == Result::Status::kError)
{
ptr->mDone = true;
ptr->mDone.store(true, std::memory_order_relaxed);
return false;
}
}
// if we're progressing to stage3, don't unlock the lock just yet
lock.release();
return true;
}
}
@ -358,6 +344,7 @@ namespace impl {
bool stage3(World* world)
{
ScopedSpinLock lock(mSpinlock, std::adopt_lock);
if (auto ptr = mRecord.lock())
{
auto& params = ptr->mParams;
@ -369,6 +356,7 @@ namespace impl {
bool stage4(World*) // nrt
{
ScopedSpinLock lock(mSpinlock);
if (auto ptr = get(NRTCommand::mID).lock())
{
ptr->mParams.template forEachParamType<BufferT, impl::CleanUpBuffer>();
@ -377,9 +365,10 @@ namespace impl {
{
NRTCommand::sendReply(name(), mSuccess);
}
ptr->mDone = true;
ptr->mDone.store(true, std::memory_order_relaxed); // = true;
return true;
}
std::cout << "ERROR: Failed to lock\n";
return false;
}
@ -388,10 +377,13 @@ namespace impl {
};
static void doProcessCallback(World* world, index id,size_t completionMsgSize,char* completionMessage,void* replyAddress)
static void doProcessCallback(World* world, index id,
size_t completionMsgSize,
char* completionMessage, void* replyAddress)
{
auto ft = getInterfaceTable();
struct Context{
struct Context
{
World* mWorld;
index mID;
size_t mCompletionMsgSize;
@ -399,23 +391,24 @@ namespace impl {
void* mReplyAddress;
};
Context* c = new Context{world,id,completionMsgSize,completionMessage,replyAddress};
Context* c = new Context{world, id, completionMsgSize, completionMessage,
replyAddress};
auto launchCompletionFromNRT = [](FifoMsg* inmsg)
{
auto launchCompletionFromNRT = [](FifoMsg* inmsg) {
auto runCompletion = [](FifoMsg* msg) {
Context* c = static_cast<Context*>(msg->mData);
World* world = c->mWorld;
index id = c->mID;
auto ft = getInterfaceTable();
void* space = ft->fRTAlloc(world, sizeof(CommandAsyncComplete));
CommandAsyncComplete* cmd = new (space) CommandAsyncComplete(world, id,c->mReplyAddress);
runAsyncCommand(world, cmd, c->mReplyAddress, c->mCompletionMsgSize, c->mCompletionMessage);
CommandAsyncComplete* cmd =
new (space) CommandAsyncComplete(world, id, c->mReplyAddress);
runAsyncCommand(world, cmd, c->mReplyAddress, c->mCompletionMsgSize,
c->mCompletionMessage);
if (c->mCompletionMsgSize) ft->fRTFree(world, c->mCompletionMessage);
};
auto tidyup = [](FifoMsg* msg)
{
auto tidyup = [](FifoMsg* msg) {
Context* c = static_cast<Context*>(msg->mData);
delete c;
};
@ -423,8 +416,7 @@ namespace impl {
auto ft = getInterfaceTable();
FifoMsg fwd = *inmsg;
fwd.Set(inmsg->mWorld, runCompletion, tidyup, inmsg->mData);
if(inmsg->mWorld->mRunning)
ft->fSendMsgToRT(inmsg->mWorld,fwd);
if (inmsg->mWorld->mRunning) ft->fSendMsgToRT(inmsg->mWorld, fwd);
};
FifoMsg msg;
@ -435,20 +427,24 @@ namespace impl {
struct CommandProcess : public NRTCommand
{
CommandProcess(World* world, sc_msg_iter* args, void* replyAddr): NRTCommand{world, args, replyAddr},mParams{Client::getParameterDescriptors()}
CommandProcess(World* world, sc_msg_iter* args, void* replyAddr)
: NRTCommand{world, args, replyAddr},
mParams{Client::getParameterDescriptors()}
{
auto& ar = *args;
ScopedSpinLock lock(mSpinlock);
if (auto ptr = get(NRTCommand::mID).lock())
{
ptr->mDone = false;
mParams.template setParameterValuesRT<ParamsFromOSC>(nullptr, world, ar);
ptr->mDone.store(false, std::memory_order_relaxed);
mParams.template setParameterValuesRT<ParamsFromOSC>(nullptr, world,
ar);
mSynchronous = static_cast<bool>(ar.geti());
} // if this fails, we'll hear about it in stage2 anyway
}
explicit CommandProcess(index id,bool synchronous,Params* params):NRTCommand{id},mSynchronous(synchronous),
mParams{Client::getParameterDescriptors()}
explicit CommandProcess(index id, bool synchronous, Params* params)
: NRTCommand{id},
mSynchronous(synchronous), mParams{Client::getParameterDescriptors()}
{
if (params)
{
@ -466,6 +462,7 @@ namespace impl {
bool stage2(World* world)
{
ScopedSpinLock lock(mSpinlock);
mRecord = get(NRTCommand::mID);
if (auto ptr = mRecord.lock())
{
@ -474,48 +471,46 @@ namespace impl {
if (mOverwriteParams) params = mParams;
auto& client = ptr->mClient;
// if(mOSCData)
// {
// params.template setParameterValuesRT<ParamsFromOSC>(nullptr, world, *mOSCData);
// mSynchronous = static_cast<bool>(mOSCData->geti());
// }
Result result = validateParameters(params);
Wrapper::printResult(world, result);
if (result.status() != Result::Status::kError)
{
// client.done()
client.setSynchronous(mSynchronous);
index id = NRTCommand::mID;
size_t completionMsgSize = mCompletionMsgSize;
char* completionMessage = mCompletionMessage;
void* replyAddress = copyReplyAddress(NRTCommand::mReplyAddress);
auto callback = [world,id,completionMsgSize,completionMessage,replyAddress](){
doProcessCallback(world,id,completionMsgSize,completionMessage,replyAddress);
auto callback = [world, id, completionMsgSize, completionMessage,
replyAddress]() {
doProcessCallback(world, id, completionMsgSize, completionMessage,
replyAddress);
};
result = mSynchronous ? client.enqueue(params) : client.enqueue(params,callback);
result = mSynchronous ? client.enqueue(params)
: client.enqueue(params, callback);
Wrapper::printResult(world, result);
if (result.ok())
{
ptr->mDone = false;
ptr->mDone.store(false, std::memory_order_relaxed);
mResult = client.process();
Wrapper::printResult(world, mResult);
bool error = mResult.status() == Result::Status::kError;
if(error) ptr->mDone = true;
return mSynchronous && !error;
if (error) ptr->mDone.store(true, std::memory_order_relaxed);
bool toStage3 = mSynchronous && !error;
if (toStage3) lock.release();
return toStage3;
}
}
}
else
{
mResult = Result{Result::Status::kError, "No ", Wrapper::getName(), " with ID ", NRTCommand::mID};
mResult = Result{Result::Status::kError, "No ", Wrapper::getName(),
" with ID ", NRTCommand::mID};
Wrapper::printResult(world, mResult);
}
return false;
@ -524,36 +519,33 @@ namespace impl {
// Only for blocking execution
bool stage3(World* world) // rt
{
ScopedSpinLock lock(mSpinlock, std::adopt_lock);
if (auto ptr = mRecord.lock())
{
ptr->mParams.template forEachParamType<BufferT, AssignBuffer>(world);
// NRTCommand::sendReply(world, name(), mResult.ok());
return true;
}
// std::cout << "Ohno\n";
return false;
}
// Only for blocking execution
bool stage4(World*) // nrt
{
ScopedSpinLock lock(mSpinlock);
if (auto ptr = get(NRTCommand::mID).lock())
{
ptr->mParams.template forEachParamType<BufferT, impl::CleanUpBuffer>();
if (NRTCommand::mID >= 0 && mSynchronous)
NRTCommand::sendReply(name(), mResult.ok());
ptr->mDone = true;
ptr->mDone.store(true, std::memory_order_relaxed);
return true;
}
return false;
}
bool synchronous()
{
return mSynchronous;
}
bool synchronous() { return mSynchronous; }
void addCompletionMessage(size_t size, char* message) //, void* addr)
{
@ -574,16 +566,14 @@ namespace impl {
struct CommandProcessNew : public NRTCommand
{
CommandProcessNew(World* world, sc_msg_iter* args, void* replyAddr)
: mNew{world, args, replyAddr},
mProcess{mNew.mID,false,nullptr}
: mNew{world, args, replyAddr}, mProcess{mNew.mID, false, nullptr}
{
mProcess.mSynchronous = args->geti();
mProcess.mReplyAddress = mNew.mReplyAddress;
}
CommandProcessNew(index id, World* world, FloatControlsIter& args, Unit* x)
: mNew{id, world, args, x},
mProcess{id}
: mNew{id, world, args, x}, mProcess{id}
{}
static const char* name()
@ -613,10 +603,7 @@ namespace impl {
mProcess.cleanup(world);
}
bool synchronous()
{
return mProcess.synchronous();
}
bool synchronous() { return mProcess.synchronous(); }
void addCompletionMessage(size_t size, char* message)
{
@ -643,6 +630,7 @@ namespace impl {
bool stage2(World*)
{
ScopedSpinLock lock(mSpinlock);
if (auto ptr = get(NRTCommand::mID).lock())
{
auto& client = ptr->mClient;
@ -662,12 +650,16 @@ namespace impl {
: NRTCommand{world, args, replyAddr}
{
auto& ar = *args;
ScopedSpinLock lock(mSpinlock);
if (auto ptr = get(NRTCommand::mID).lock())
{
ptr->mParams.template setParameterValuesRT<ParamsFromOSC>(nullptr, world, ar);
ptr->mParams.template setParameterValuesRT<ParamsFromOSC>(nullptr,
world, ar);
Result result = validateParameters(ptr->mParams);
ptr->mClient.setParams(ptr->mParams);
} else printNotFound(NRTCommand::mID);
}
else
printNotFound(NRTCommand::mID);
}
static const char* name()
@ -684,12 +676,12 @@ namespace impl {
{
auto ft = getInterfaceTable();
return ft->fDoAsynchronousCommand(world, replyAddr,Command::name(),cmd,
return ft->fDoAsynchronousCommand(
world, replyAddr, Command::name(), cmd,
[](World* w, void* d) { return static_cast<Command*>(d)->stage2(w); },
[](World* w, void* d) { return static_cast<Command*>(d)->stage3(w); },
[](World* w, void* d) { return static_cast<Command*>(d)->stage4(w); },
[](World* w, void* d)
{
[](World* w, void* d) {
auto cmd = static_cast<Command*>(d);
cmd->cleanup(w);
cmd->~Command();
@ -699,31 +691,40 @@ namespace impl {
}
static auto runAsyncCommand(World* world, CommandProcess* cmd, void* replyAddr,
size_t completionMsgSize, char* completionMsgData)
static auto runAsyncCommand(World* world, CommandProcess* cmd,
void* replyAddr, size_t completionMsgSize,
char* completionMsgData)
{
if (!cmd->synchronous())
{
auto msgcopy = (char*)getInterfaceTable()->fRTAlloc(world,completionMsgSize);
auto msgcopy =
(char*) getInterfaceTable()->fRTAlloc(world, completionMsgSize);
memcpy(msgcopy, completionMsgData, completionMsgSize);
cmd->addCompletionMessage(completionMsgSize, msgcopy);
return runAsyncCommand<CommandProcess>(world, cmd, replyAddr, 0, nullptr);
}
else return runAsyncCommand<CommandProcess>(world, cmd, replyAddr, completionMsgSize, completionMsgData);
else
return runAsyncCommand<CommandProcess>(
world, cmd, replyAddr, completionMsgSize, completionMsgData);
}
static auto runAsyncCommand(World* world, CommandProcessNew* cmd, void* replyAddr,
size_t completionMsgSize, char* completionMsgData)
static auto runAsyncCommand(World* world, CommandProcessNew* cmd,
void* replyAddr, size_t completionMsgSize,
char* completionMsgData)
{
if (!cmd->synchronous())
{
auto msgcopy = (char*)getInterfaceTable()->fRTAlloc(world,completionMsgSize);
auto msgcopy =
(char*) getInterfaceTable()->fRTAlloc(world, completionMsgSize);
memcpy(msgcopy, completionMsgData, completionMsgSize);
cmd->addCompletionMessage(completionMsgSize, msgcopy);
return runAsyncCommand<CommandProcessNew>(world, cmd, replyAddr, 0, nullptr);
return runAsyncCommand<CommandProcessNew>(world, cmd, replyAddr, 0,
nullptr);
}
else return runAsyncCommand<CommandProcessNew>(world, cmd, replyAddr, completionMsgSize, completionMsgData);
else
return runAsyncCommand<CommandProcessNew>(
world, cmd, replyAddr, completionMsgSize, completionMsgData);
}
@ -731,34 +732,35 @@ namespace impl {
static void defineNRTCommand()
{
auto ft = getInterfaceTable();
auto commandRunner = [](World* world, void*, struct sc_msg_iter* args, void* replyAddr)
{
auto commandRunner = [](World* world, void*, struct sc_msg_iter* args,
void* replyAddr) {
auto ft = getInterfaceTable();
void* space = ft->fRTAlloc(world, sizeof(Command));
Command* cmd = new (space) Command(world, args, replyAddr);
// This is brittle, but can't think of something better offhand
//This is the only place we can check for a completion message at the end of the OSC packet
//beause it has to be passed on to DoAsynhronousCommand at this point. However, detecting correctly
//relies on the Command type having fully consumed arguments from the args iterator in the constructor for cmd
// This is the only place we can check for a completion message at the end
// of the OSC packet beause it has to be passed on to DoAsynhronousCommand
// at this point. However, detecting correctly relies on the Command type
// having fully consumed arguments from the args iterator in the
// constructor for cmd
size_t completionMsgSize{args ? args->getbsize() : 0};
assert(completionMsgSize <= std::numeric_limits<int>::max());
char* completionMsgData = nullptr;
if (completionMsgSize) {
if (completionMsgSize)
{
completionMsgData = (char*) ft->fRTAlloc(world, completionMsgSize);
args->getb(completionMsgData, completionMsgSize);
}
runAsyncCommand(world, cmd, replyAddr, completionMsgSize, completionMsgData);
runAsyncCommand(world, cmd, replyAddr, completionMsgSize,
completionMsgData);
if (completionMsgSize) ft->fRTFree(world, completionMsgData);
};
ft->fDefinePlugInCmd(Command::name(), commandRunner, nullptr);
}
struct NRTProgressUnit : SCUnit
{
@ -777,10 +779,17 @@ namespace impl {
void next(int)
{
if (0 == mCounter++)
if (0 == mCounter)
{
ScopedSpinLock lock(mSpinlock, std::try_to_lock);
if (!lock.owns_lock()) return;
index id = static_cast<index>(mInBuf[0][0]);
if(auto ptr = tryGet(id).lock())
auto record = get(id);
mCounter++;
if (auto ptr = record.lock())
{
mInit = true;
if (ptr->mClient.done()) mDone = 1;
@ -789,8 +798,10 @@ namespace impl {
else
{
if (!mInit)
std::cout << "WARNING: No " << Wrapper::getName() << " with ID " << id << std::endl;
else mDone = 1;
std::cout << "WARNING: No " << Wrapper::getName() << " with ID "
<< id << std::endl;
else
mDone = 1;
}
}
mCounter %= mInterval;
@ -806,7 +817,8 @@ namespace impl {
struct NRTTriggerUnit : SCUnit
{
static index count(){
static index count()
{
static index counter = -1;
return counter--;
}
@ -815,8 +827,7 @@ namespace impl {
index ControlSize()
{
return index(mNumInputs)
- mSpecialIndex //used for oddball cases
return index(mNumInputs) - mSpecialIndex // used for oddball cases
- 3; // id + trig + blocking;
}
@ -827,68 +838,75 @@ namespace impl {
}
NRTTriggerUnit()
: mControlsIterator{mInBuf + ControlOffset(),ControlSize()},mParams{Client::getParameterDescriptors()}
: mControlsIterator{mInBuf + ControlOffset(), ControlSize()},
mParams{Client::getParameterDescriptors()}
{
mID = static_cast<index>(mInBuf[0][0]);
if (mID == -1) mID = count();
auto cmd = NonRealTime::rtalloc<CommandNew>(mWorld,mID,mWorld, mControlsIterator, this);
auto cmd = NonRealTime::rtalloc<CommandNew>(mWorld, mID, mWorld,
mControlsIterator, this);
runAsyncCommand(mWorld, cmd, nullptr, 0, nullptr);
// mInst = get(mID);
set_calc_function<NRTTriggerUnit, &NRTTriggerUnit::next>();
Wrapper::getInterfaceTable()->fClearUnitOutputs(this, 1);
}
~NRTTriggerUnit()
{
// if(auto ptr = mInst.lock())
// {
set_calc_function<NRTTriggerUnit, &NRTTriggerUnit::clear>();
auto cmd = NonRealTime::rtalloc<CommandFree>(mWorld, mID);
runAsyncCommand(mWorld, cmd, nullptr, 0, nullptr);
// }
}
void next(int)
void clear(int)
{
Wrapper::getInterfaceTable()->fClearUnitOutputs(this, mNumOutputs);
}
index triggerInput = static_cast<index>(mInBuf[static_cast<index>(mNumInputs) - 2][0]);
void next(int)
{
index triggerInput =
static_cast<index>(mInBuf[static_cast<index>(mNumInputs) - 2][0]);
mTrigger = mTrigger || triggerInput;
// if(auto ptr = mInst->lock())
// if(auto ptr = get(mID).lock())
// {
bool trigger = (!mPreviousTrigger) && triggerInput; // mTrigger;
mPreviousTrigger = triggerInput;
mTrigger = 0;
// auto& client = ptr->mClient;
if (trigger)
{
mControlsIterator.reset(1 + mInBuf); // add one for ID
// auto& params = ptr->mParams;
Wrapper::setParams(this, mParams, mControlsIterator, true, false);
bool blocking = mInBuf[mNumInputs - 1][0] > 0;
CommandProcess* cmd = rtalloc<CommandProcess>(mWorld,mID,blocking,&mParams);
CommandProcess* cmd =
rtalloc<CommandProcess>(mWorld, mID, blocking, &mParams);
runAsyncCommand(mWorld, cmd, nullptr, 0, nullptr);
mRunCount++;
}
else
{
if(auto ptr = tryGet(mID).lock())
ScopedSpinLock lock(mSpinlock, std::try_to_lock);
if (!lock.owns_lock()) return;
auto record = get(mID);
if (auto ptr = record.lock())
{
mInit = true;
auto& client = ptr->mClient;
mDone = ptr->mDone;
mDone = ptr->mDone.load(std::memory_order_relaxed);
out0(0) = mDone ? 1 : static_cast<float>(client.progress());
} else mDone = mInit;
}
// }
// else printNotFound(id);
else
mDone = mInit;
}
}
private:
bool mPreviousTrigger{false};
bool mTrigger{false};
bool mBeingFreed{false};
Result mResult;
impl::FloatControlsIter mControlsIterator;
index mID;
@ -905,8 +923,7 @@ namespace impl {
index ControlOffset() { return mSpecialIndex + 2; }
index ControlSize()
{
return index(mNumInputs)
- mSpecialIndex //used for oddball cases
return index(mNumInputs) - mSpecialIndex // used for oddball cases
- 2; // trig + id
}
@ -922,29 +939,24 @@ namespace impl {
{
mID = static_cast<index>(in0(1));
init();
// mInst = get(id);
// if(auto ptr = mInst.lock())
// {
// auto& client = ptr->mClient;
// mDelegate.init(*this,client,mControls);
set_calc_function<NRTModelQueryUnit, &NRTModelQueryUnit::next>();
Wrapper::getInterfaceTable()->fClearUnitOutputs(this, 1);
// }else printNotFound(mID);
}
void init()
{
if(mSpinlock.tryLock())
ScopedSpinLock lock(mSpinlock, std::try_to_lock);
if (lock.owns_lock())
{
mInit = false;
mInst = unsafeGet(mID);
mInst = get(mID);
if (auto ptr = mInst.lock())
{
auto& client = ptr->mClient;
mDelegate.init(*this, client, mControls);
mInit = true;
}//else printNotFound(mID);
mSpinlock.unlock();
}
}
}
@ -954,18 +966,21 @@ namespace impl {
index id = static_cast<index>(in0(1));
if (mID != id) init();
if (!mInit) return;
if(mSpinlock.tryLock())
ScopedSpinLock lock(mSpinlock, std::try_to_lock);
if (lock.owns_lock())
;
{
if (auto ptr = mInst.lock())
{
auto& client = ptr->mClient;
auto& params = ptr->mParams;
mControls.reset(mInBuf + ControlOffset());
mDelegate.next(*this,client,params,mControls, ptr.use_count() == 2);
}else printNotFound(id);
mSpinlock.unlock();
mDelegate.next(*this, client, params, mControls,
ptr.use_count() == 2);
}
else
printNotFound(id);
}
}
private:
@ -980,7 +995,9 @@ namespace impl {
using ParamSetType = typename Client::ParamSetType;
template <size_t N, typename T>
using SetupMessageCmd = typename FluidSCMessaging<Wrapper,Client>::template SetupMessageCmd<N,T>;
using SetupMessageCmd =
typename FluidSCMessaging<Wrapper, Client>::template SetupMessageCmd<N,
T>;
template <bool, typename CommandType>
@ -993,7 +1010,8 @@ namespace impl {
template <typename CommandType>
struct DefineCommandIf<true, CommandType>
{
void operator()() {
void operator()()
{
// std::cout << CommandType::name() << std::endl;
defineNRTCommand<CommandType>();
}
@ -1008,7 +1026,10 @@ namespace impl {
template <typename UnitType>
struct RegisterUnitIf<true, UnitType>
{
void operator()(InterfaceTable* ft) { registerUnit<UnitType>(ft,UnitType::name()); }
void operator()(InterfaceTable* ft)
{
registerUnit<UnitType>(ft, UnitType::name());
}
};
@ -1038,9 +1059,10 @@ namespace impl {
static std::string flushCmd = std::string(Wrapper::getName()) + "/flush";
ft->fDefinePlugInCmd(flushCmd.c_str(),[](World*, void*, struct sc_msg_iter*, void* ){
mCache.clear();
},nullptr);
ft->fDefinePlugInCmd(
flushCmd.c_str(),
[](World*, void*, struct sc_msg_iter*, void*) { mCache.clear(); },
nullptr);
}
@ -1087,12 +1109,14 @@ namespace impl {
};
template <typename Client, typename Wrapper>
typename NonRealTime<Client, Wrapper>::Cache NonRealTime<Client,Wrapper>::mCache{};
typename NonRealTime<Client, Wrapper>::Cache
NonRealTime<Client, Wrapper>::mCache{};
template <typename Client, typename Wrapper>
typename NonRealTime<Client, Wrapper>::Spinlock NonRealTime<Client,Wrapper>::mSpinlock{};
typename NonRealTime<Client, Wrapper>::Spinlock
NonRealTime<Client, Wrapper>::mSpinlock{};
}
}
}
} // namespace impl
} // namespace client
} // namespace fluid

Loading…
Cancel
Save