Formatting

nix
Owen Green 6 years ago
parent 83a18adb62
commit ac7fc5b29c

@ -11,16 +11,12 @@ under the European Unions Horizon 2020 research and innovation programme
#pragma once
#include "SCBufferAdaptor.hpp"
#include <FluidVersion.hpp>
#include <clients/common/FluidBaseClient.hpp>
#include <clients/common/Result.hpp>
#include <data/FluidTensor.hpp>
#include <data/TensorTypes.hpp>
#include <FluidVersion.hpp>
#include <SC_PlugIn.hpp>
#include <algorithm>
#include <string>
#include <tuple>
@ -39,28 +35,25 @@ namespace impl {
// Iterate over kr/ir inputs via callbacks from params object
struct FloatControlsIter
{
FloatControlsIter(float **vals, index N)
: mValues(vals)
, mSize(N)
{}
FloatControlsIter(float** vals, index N) : mValues(vals), mSize(N) {}
float next() { return mCount >= mSize ? 0 : *mValues[mCount++]; }
void reset(float **vals)
void reset(float** vals)
{
mValues = vals;
mCount = 0;
mCount = 0;
}
index size() const noexcept { return mSize; }
private:
float **mValues;
index mSize;
index mCount{0};
float** mValues;
index mSize;
index mCount{0};
};
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Real Time Processor
@ -70,19 +63,18 @@ class RealTime : public SCUnit
using HostVector = FluidTensorView<float, 1>;
using ParamSetType = typename Client::ParamSetType;
// using Client = typename Wrapper::ClientType;
public:
static void setup(InterfaceTable *ft, const char *name)
static void setup(InterfaceTable* ft, const char* name)
{
registerUnit<Wrapper>(ft, name);
ft->fDefineUnitCmd(name, "latency", doLatency);
}
static void doLatency(Unit *unit, sc_msg_iter*)
static void doLatency(Unit* unit, sc_msg_iter*)
{
float l[]{static_cast<float>(static_cast<Wrapper *>(unit)->mClient.latency())};
auto ft = Wrapper::getInterfaceTable();
float l[]{
static_cast<float>(static_cast<Wrapper*>(unit)->mClient.latency())};
auto ft = Wrapper::getInterfaceTable();
std::stringstream ss;
ss << '/' << Wrapper::getName() << "_latency";
@ -91,24 +83,31 @@ public:
}
RealTime()
: mControlsIterator{mInBuf + mSpecialIndex + 1,static_cast<index>(mNumInputs) - mSpecialIndex - 1}
, mParams{Wrapper::Client::getParameterDescriptors()}
, mClient{Wrapper::setParams(mParams,mWorld->mVerbosity > 0, mWorld, mControlsIterator,true)}
: mControlsIterator{mInBuf + mSpecialIndex + 1,
static_cast<index>(mNumInputs) - mSpecialIndex - 1},
mParams{Wrapper::Client::getParameterDescriptors()},
mClient{Wrapper::setParams(mParams, mWorld->mVerbosity > 0, mWorld,
mControlsIterator, true)}
{}
void init()
{
assert(!(mClient.audioChannelsOut() > 0 && mClient.controlChannelsOut() > 0) &&
"Client can't have both audio and control outputs");
assert(
!(mClient.audioChannelsOut() > 0 && mClient.controlChannelsOut() > 0) &&
"Client can't have both audio and control outputs");
//If we don't the number of arguments we expect, the language side code is probably the wrong version
//set plugin to no-op, squawk, and bail;
if(mControlsIterator.size() != Client::getParameterDescriptors().count())
// If we don't the number of arguments we expect, the language side code is
// probably the wrong version set plugin to no-op, squawk, and bail;
if (mControlsIterator.size() != Client::getParameterDescriptors().count())
{
mCalcFunc = Wrapper::getInterfaceTable()->fClearUnitOutputs;
std::cout << "ERROR: " << Wrapper::getName() << " wrong number of arguments. Expected "
<< Client::getParameterDescriptors().count() << ", got " << mControlsIterator.size()
<< ". Your .sc file and binary plugin might be different versions." << std::endl;
std::cout
<< "ERROR: " << Wrapper::getName()
<< " wrong number of arguments. Expected "
<< Client::getParameterDescriptors().count() << ", got "
<< mControlsIterator.size()
<< ". Your .sc file and binary plugin might be different versions."
<< std::endl;
return;
}
@ -116,7 +115,8 @@ public:
mInputConnections.reserve(asUnsigned(mClient.audioChannelsIn()));
mOutputConnections.reserve(asUnsigned(mClient.audioChannelsOut()));
mAudioInputs.reserve(asUnsigned(mClient.audioChannelsIn()));
mOutputs.reserve(asUnsigned(std::max(mClient.audioChannelsOut(), mClient.controlChannelsOut())));
mOutputs.reserve(asUnsigned(
std::max(mClient.audioChannelsOut(), mClient.controlChannelsOut())));
for (index i = 0; i < mClient.audioChannelsIn(); ++i)
{
@ -130,7 +130,8 @@ public:
mOutputs.emplace_back(nullptr, 0, 0);
}
for (index i = 0; i < mClient.controlChannelsOut(); ++i) { mOutputs.emplace_back(nullptr, 0, 0); }
for (index i = 0; i < mClient.controlChannelsOut(); ++i)
{ mOutputs.emplace_back(nullptr, 0, 0); }
mCalcFunc = make_calc_function<RealTime, &RealTime::next>();
Wrapper::getInterfaceTable()->fClearUnitOutputs(this, 1);
@ -138,28 +139,30 @@ public:
void next(int)
{
mControlsIterator.reset(mInBuf + 1); //mClient.audioChannelsIn());
Wrapper::setParams(mParams, mWorld->mVerbosity > 0, mWorld, mControlsIterator); // forward on inputs N + audio inputs as params
mControlsIterator.reset(mInBuf + 1); // mClient.audioChannelsIn());
Wrapper::setParams(
mParams, mWorld->mVerbosity > 0, mWorld,
mControlsIterator); // forward on inputs N + audio inputs as params
mParams.constrainParameterValues();
const Unit *unit = this;
const Unit* unit = this;
for (index i = 0; i < mClient.audioChannelsIn(); ++i)
{
if (mInputConnections[asUnsigned(i)])
{
mAudioInputs[asUnsigned(i)].reset(IN(i), 0, fullBufferSize());
}
{ mAudioInputs[asUnsigned(i)].reset(IN(i), 0, fullBufferSize()); }
}
for (index i = 0; i < mClient.audioChannelsOut(); ++i)
{
assert(i <= std::numeric_limits<int>::max());
if (mOutputConnections[asUnsigned(i)]) mOutputs[asUnsigned(i)].reset(out(static_cast<int>(i)), 0, fullBufferSize());
if (mOutputConnections[asUnsigned(i)])
mOutputs[asUnsigned(i)].reset(out(static_cast<int>(i)), 0,
fullBufferSize());
}
for (index i = 0; i < mClient.controlChannelsOut(); ++i)
{
assert(i <= std::numeric_limits<int>::max());
mOutputs[asUnsigned(i)].reset(out(static_cast<int>(i)), 0, 1);
}
mClient.process(mAudioInputs, mOutputs,mContext);
mClient.process(mAudioInputs, mOutputs, mContext);
}
private:
@ -171,97 +174,107 @@ private:
FluidContext mContext;
protected:
ParamSetType mParams;
Client mClient;
ParamSetType mParams;
Client mClient;
};
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
/// Non Real Time Processor
/// This is also a UGen, but the main action is delegated off to a worker thread, via the NRT thread.
/// The RT bit is there to allow us (a) to poll our thread and (b) emit a kr progress update
/// This is also a UGen, but the main action is delegated off to a worker
/// thread, via the NRT thread. The RT bit is there to allow us (a) to poll our
/// thread and (b) emit a kr progress update
template <typename Client, typename Wrapper>
class NonRealTime: public SCUnit
class NonRealTime : public SCUnit
{
using ParamSetType = typename Client::ParamSetType;
public:
static void setup(InterfaceTable *ft, const char *name)
static void setup(InterfaceTable* ft, const char* name)
{
registerUnit<Wrapper>(ft, name);
ft->fDefineUnitCmd(name, "cancel", doCancel);
ft->fDefineUnitCmd(name, "queue_enabled", [](struct Unit* unit, struct sc_msg_iter* args)
{
auto w = static_cast<Wrapper *>(unit);
w->mQueueEnabled = args->geti(0);
w->mFifoMsg.Set(w->mWorld,[](FifoMsg* f)
{
auto w = static_cast<Wrapper*>(f->mData);
w->mClient.setQueueEnabled(w->mQueueEnabled);
},nullptr,w);
Wrapper::getInterfaceTable()->fSendMsgFromRT(w->mWorld, w->mFifoMsg);
});
ft->fDefineUnitCmd(name, "synchronous", [](struct Unit* unit, struct sc_msg_iter* args)
{
auto w = static_cast<Wrapper *>(unit);
w->mSynchronous = args->geti(0);
w->mFifoMsg.Set(w->mWorld,[](FifoMsg* f)
{
auto w = static_cast<Wrapper*>(f->mData);
w->mClient.setSynchronous(w->mSynchronous);
},nullptr,w);
Wrapper::getInterfaceTable()->fSendMsgFromRT(w->mWorld, w->mFifoMsg);
});
ft->fDefineUnitCmd(
name, "queue_enabled", [](struct Unit* unit, struct sc_msg_iter* args) {
auto w = static_cast<Wrapper*>(unit);
w->mQueueEnabled = args->geti(0);
w->mFifoMsg.Set(
w->mWorld,
[](FifoMsg* f) {
auto w = static_cast<Wrapper*>(f->mData);
w->mClient.setQueueEnabled(w->mQueueEnabled);
},
nullptr, w);
Wrapper::getInterfaceTable()->fSendMsgFromRT(w->mWorld, w->mFifoMsg);
});
ft->fDefineUnitCmd(
name, "synchronous", [](struct Unit* unit, struct sc_msg_iter* args) {
auto w = static_cast<Wrapper*>(unit);
w->mSynchronous = args->geti(0);
w->mFifoMsg.Set(
w->mWorld,
[](FifoMsg* f) {
auto w = static_cast<Wrapper*>(f->mData);
w->mClient.setSynchronous(w->mSynchronous);
},
nullptr, w);
Wrapper::getInterfaceTable()->fSendMsgFromRT(w->mWorld, w->mFifoMsg);
});
}
/// Penultimate input is the doneAction, final is blocking mode. Neither are params, so we skip them in the controlsIterator
NonRealTime() :
mControlsIterator{mInBuf,index(mNumInputs) - mSpecialIndex - 2}
, mParams{Wrapper::Client::getParameterDescriptors()}
, mClient{Wrapper::setParams(mParams,mWorld->mVerbosity > 0, mWorld, mControlsIterator,true)}
, mSynchronous{mNumInputs > 2 ? (in0(int(mNumInputs) - 1) > 0) : false}
/// Penultimate input is the doneAction, final is blocking mode. Neither are
/// params, so we skip them in the controlsIterator
NonRealTime()
: mControlsIterator{mInBuf, index(mNumInputs) - mSpecialIndex - 2},
mParams{Wrapper::Client::getParameterDescriptors()},
mClient{Wrapper::setParams(mParams, mWorld->mVerbosity > 0, mWorld,
mControlsIterator, true)},
mSynchronous{mNumInputs > 2 ? (in0(int(mNumInputs) - 1) > 0) : false}
{}
~NonRealTime()
{
if(mClient.state() == ProcessState::kProcessing)
if (mClient.state() == ProcessState::kProcessing)
{
std::cout << Wrapper::getName() << ": Processing cancelled \n";
Wrapper::getInterfaceTable()->fSendNodeReply(&mParent->mNode,1,"/done",0,nullptr);
Wrapper::getInterfaceTable()->fSendNodeReply(&mParent->mNode, 1, "/done",
0, nullptr);
}
//processing will be cancelled in ~NRTThreadAdaptor()
// processing will be cancelled in ~NRTThreadAdaptor()
}
/// No option of not using a worker thread for now
/// init() sets up the NRT process via the SC NRT thread, and then sets our UGen calc function going
/// init() sets up the NRT process via the SC NRT thread, and then sets our
/// UGen calc function going
void init()
{
mFifoMsg.Set(mWorld, initNRTJob, nullptr, this);
mWorld->ft->fSendMsgFromRT(mWorld,mFifoMsg);
//we want to poll thread roughly every 20ms
mWorld->ft->fSendMsgFromRT(mWorld, mFifoMsg);
// we want to poll thread roughly every 20ms
checkThreadInterval = static_cast<index>(0.02 / controlDur());
set_calc_function<NonRealTime, &NonRealTime::poll>();
};
/// The calc function. Checks to see if we've cancelled, spits out progress, launches tidy up when complete
/// The calc function. Checks to see if we've cancelled, spits out progress,
/// launches tidy up when complete
void poll(int)
{
out0(0) = mDone ? 1.0 : static_cast<float>(mClient.progress());
if(0 == pollCounter++ && !mCheckingForDone)
if (0 == pollCounter++ && !mCheckingForDone)
{
mCheckingForDone = true;
mWorld->ft->fDoAsynchronousCommand(mWorld, nullptr, Wrapper::getName(), this,
postProcess, exchangeBuffers, tidyUp, destroy,
0, nullptr);
mWorld->ft->fDoAsynchronousCommand(mWorld, nullptr, Wrapper::getName(),
this, postProcess, exchangeBuffers,
tidyUp, destroy, 0, nullptr);
}
pollCounter %= checkThreadInterval;
}
/// To be called on NRT thread. Validate parameters and commence processing in new thread
/// To be called on NRT thread. Validate parameters and commence processing in
/// new thread
static void initNRTJob(FifoMsg* f)
{
auto w = static_cast<Wrapper*>(f->mData);
@ -272,8 +285,9 @@ public:
if (!result.ok())
{
std::cout << "ERROR: " << Wrapper::getName() << ": " << result.message().c_str() << std::endl;
return;
std::cout << "ERROR: " << Wrapper::getName() << ": "
<< result.message().c_str() << std::endl;
return;
}
w->mClient.setSynchronous(w->mSynchronous);
w->mClient.enqueue(w->mParams);
@ -281,27 +295,35 @@ public:
}
/// Check result and report if bad
static bool postProcess(World*, void *data)
static bool postProcess(World*, void* data)
{
auto w = static_cast<Wrapper*>(data);
Result r;
auto w = static_cast<Wrapper*>(data);
Result r;
ProcessState s = w->mClient.checkProgress(r);
if((s==ProcessState::kDone || s==ProcessState::kDoneStillProcessing)
|| (w->mSynchronous && s==ProcessState::kNoProcess) ) //I think this hinges on the fact that when mSynchrous = true, this call will always be behind process() on the command FIFO, so we can assume that if the state is kNoProcess, it has run (vs never having run)
if ((s == ProcessState::kDone || s == ProcessState::kDoneStillProcessing) ||
(w->mSynchronous &&
s == ProcessState::kNoProcess)) // I think this hinges on the fact that
// when mSynchrous = true, this call
// will always be behind process() on
// the command FIFO, so we can assume
// that if the state is kNoProcess, it
// has run (vs never having run)
{
//Given that cancellation from the language now always happens by freeing the
//synth, this block isn't reached normally. HOwever, if someone cancels using u_cmd, this is what will fire
if(r.status() == Result::Status::kCancelled)
// Given that cancellation from the language now always happens by freeing
// the synth, this block isn't reached normally. HOwever, if someone
// cancels using u_cmd, this is what will fire
if (r.status() == Result::Status::kCancelled)
{
std::cout << Wrapper::getName() << ": Processing cancelled \n";
std::cout << Wrapper::getName() << ": Processing cancelled \n";
w->mCancelled = true;
return false;
}
if(!r.ok())
if (!r.ok())
{
std::cout << "ERROR: " << Wrapper::getName() << ": " << r.message().c_str() << '\n';
std::cout << "ERROR: " << Wrapper::getName() << ": "
<< r.message().c_str() << '\n';
return false;
}
@ -312,50 +334,65 @@ public:
}
/// swap NRT buffers back to RT-land
static bool exchangeBuffers(World *world, void *data) { return static_cast<Wrapper *>(data)->exchangeBuffers(world); }
static bool exchangeBuffers(World* world, void* data)
{
return static_cast<Wrapper*>(data)->exchangeBuffers(world);
}
/// Tidy up any temporary buffers
static bool tidyUp(World *world, void *data) { return static_cast<Wrapper *>(data)->tidyUp(world); }
static bool tidyUp(World* world, void* data)
{
return static_cast<Wrapper*>(data)->tidyUp(world);
}
/// Now we're actually properly done, call the UGen's done action (possibly destroying this instance)
/// Now we're actually properly done, call the UGen's done action (possibly
/// destroying this instance)
static void destroy(World* world, void* data)
{
auto w = static_cast<Wrapper*>(data);
if(w->mDone && w->mNumInputs > 2) //don't check for doneAction if UGen has no ins (there should be 3 minimum -> sig, doneAction, blocking mode)
if (w->mDone &&
w->mNumInputs >
2) // don't check for doneAction if UGen has no ins (there should be
// 3 minimum -> sig, doneAction, blocking mode)
{
int doneAction = static_cast<int>(w->in0(int(w->mNumInputs) - 2)); //doneAction is penultimate input; THIS IS THE LAW
world->ft->fDoneAction(doneAction,w);
int doneAction = static_cast<int>(
w->in0(int(w->mNumInputs) -
2)); // doneAction is penultimate input; THIS IS THE LAW
world->ft->fDoneAction(doneAction, w);
return;
}
w->mCheckingForDone = false;
}
static void doCancel(Unit *unit, sc_msg_iter*)
static void doCancel(Unit* unit, sc_msg_iter*)
{
static_cast<Wrapper *>(unit)->mClient.cancel();
static_cast<Wrapper*>(unit)->mClient.cancel();
}
private:
static Result validateParameters(NonRealTime *w)
private:
static Result validateParameters(NonRealTime* w)
{
auto results = w->mParams.constrainParameterValues();
for (auto &r : results)
for (auto& r : results)
{
if (!r.ok()) return r;
}
return {};
}
bool exchangeBuffers(World *world) //RT thread
bool exchangeBuffers(World* world) // RT thread
{
mParams.template forEachParamType<BufferT, AssignBuffer>(world);
//At this point, we can see if we're finished and let the language know (or it can wait for the doneAction, but that takes extra time)
//use replyID to convey status (0 = normal completion, 1 = cancelled)
if(mDone) world->ft->fSendNodeReply(&mParent->mNode,0,"/done",0,nullptr);
if(mCancelled) world->ft->fSendNodeReply(&mParent->mNode,1,"/done",0,nullptr);
// At this point, we can see if we're finished and let the language know (or
// it can wait for the doneAction, but that takes extra time) use replyID to
// convey status (0 = normal completion, 1 = cancelled)
if (mDone)
world->ft->fSendNodeReply(&mParent->mNode, 0, "/done", 0, nullptr);
if (mCancelled)
world->ft->fSendNodeReply(&mParent->mNode, 1, "/done", 0, nullptr);
return true;
}
bool tidyUp(World *) //NRT thread
bool tidyUp(World*) // NRT thread
{
mParams.template forEachParamType<BufferT, CleanUpBuffer>();
return true;
@ -364,51 +401,53 @@ private:
template <size_t N, typename T>
struct AssignBuffer
{
void operator()(const typename BufferT::type &p, World *w)
void operator()(const typename BufferT::type& p, World* w)
{
if (auto b = static_cast<SCBufferAdaptor *>(p.get())) b->assignToRT(w);
if (auto b = static_cast<SCBufferAdaptor*>(p.get())) b->assignToRT(w);
}
};
template <size_t N, typename T>
struct CleanUpBuffer
{
void operator()(const typename BufferT::type &p)
void operator()(const typename BufferT::type& p)
{
if (auto b = static_cast<SCBufferAdaptor *>(p.get())) b->cleanUp();
if (auto b = static_cast<SCBufferAdaptor*>(p.get())) b->cleanUp();
}
};
FloatControlsIter mControlsIterator;
FifoMsg mFifoMsg;
char* mCompletionMessage = nullptr;
void* mReplyAddr = nullptr;
const char *mName = nullptr;
index checkThreadInterval;
index pollCounter{0};
FloatControlsIter mControlsIterator;
FifoMsg mFifoMsg;
char* mCompletionMessage = nullptr;
void* mReplyAddr = nullptr;
const char* mName = nullptr;
index checkThreadInterval;
index pollCounter{0};
protected:
ParamSetType mParams;
Client mClient;
bool mSynchronous{true};
bool mQueueEnabled{false};
bool mCheckingForDone{false}; //only write to this from RT thread kthx
bool mCancelled{false};
ParamSetType mParams;
Client mClient;
bool mSynchronous{true};
bool mQueueEnabled{false};
bool mCheckingForDone{false}; // only write to this from RT thread kthx
bool mCancelled{false};
};
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
/// An impossible monstrosty
template <typename Client, typename Wrapper>
class NonRealTimeAndRealTime : public RealTime<Client, Wrapper>, public NonRealTime<Client, Wrapper>
class NonRealTimeAndRealTime : public RealTime<Client, Wrapper>,
public NonRealTime<Client, Wrapper>
{
static void setup(InterfaceTable *ft, const char *name)
static void setup(InterfaceTable* ft, const char* name)
{
RealTime<Client,Wrapper>::setup(ft, name);
NonRealTime<Client,Wrapper>::setup(ft, name);
RealTime<Client, Wrapper>::setup(ft, name);
NonRealTime<Client, Wrapper>::setup(ft, name);
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Template Specialisations for NRT/RT
@ -418,26 +457,26 @@ class FluidSCWrapperImpl;
template <typename Client, typename Wrapper>
class FluidSCWrapperImpl<Client, Wrapper, std::true_type, std::false_type>
: public NonRealTime<Client, Wrapper>
{
//public:
// FluidSCWrapperImpl(World* w, sc_msg_iter *args): NonRealTime<Client, Wrapper>(w,args){};
};
{};
template <typename Client, typename Wrapper>
class FluidSCWrapperImpl<Client, Wrapper, std::false_type, std::true_type> : public RealTime<Client, Wrapper>
class FluidSCWrapperImpl<Client, Wrapper, std::false_type, std::true_type>
: public RealTime<Client, Wrapper>
{};
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Make base class(es), full of CRTP mixin goodness
template <typename Client>
using FluidSCWrapperBase = FluidSCWrapperImpl<Client, FluidSCWrapper<Client>, isNonRealTime<Client>, isRealTime<Client>>;
using FluidSCWrapperBase =
FluidSCWrapperImpl<Client, FluidSCWrapper<Client>, isNonRealTime<Client>,
isRealTime<Client>>;
} // namespace impl
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
///The main wrapper
/// The main wrapper
template <typename C>
class FluidSCWrapper : public impl::FluidSCWrapperBase<C>
{
@ -448,27 +487,39 @@ class FluidSCWrapper : public impl::FluidSCWrapperBase<C>
template <typename ArgType, size_t N, typename T>
struct Setter
{
static constexpr index argSize = C::getParameterDescriptors().template get<N>().fixedSize;
static constexpr index argSize =
C::getParameterDescriptors().template get<N>().fixedSize;
auto fromArgs(World *, FloatControlsIter& args, LongT::type, int) { return args.next(); }
auto fromArgs(World *, FloatControlsIter& args, FloatT::type, int) { return args.next(); }
auto fromArgs(World*, FloatControlsIter& args, LongT::type, int)
{
return args.next();
}
auto fromArgs(World*, FloatControlsIter& args, FloatT::type, int)
{
return args.next();
}
auto fromArgs(World *w, ArgType args, BufferT::type, int)
auto fromArgs(World* w, ArgType args, BufferT::type, int)
{
typename LongT::type bufnum = static_cast<LongT::type>(fromArgs(w, args, LongT::type(), -1));
return BufferT::type(bufnum >= 0 ? new SCBufferAdaptor(bufnum, w) : nullptr);
typename LongT::type bufnum =
static_cast<LongT::type>(fromArgs(w, args, LongT::type(), -1));
return BufferT::type(bufnum >= 0 ? new SCBufferAdaptor(bufnum, w)
: nullptr);
}
auto fromArgs(World *w, ArgType args, InputBufferT::type, int)
auto fromArgs(World* w, ArgType args, InputBufferT::type, int)
{
typename LongT::type bufnum = static_cast<LongT::type>(fromArgs(w, args, LongT::type(), -1));
return InputBufferT::type(bufnum >= 0 ? new SCBufferAdaptor(bufnum, w) : nullptr);
typename LongT::type bufnum =
static_cast<LongT::type>(fromArgs(w, args, LongT::type(), -1));
return InputBufferT::type(bufnum >= 0 ? new SCBufferAdaptor(bufnum, w)
: nullptr);
}
typename T::type operator()(World *w, ArgType args)
typename T::type operator()(World* w, ArgType args)
{
ParamLiteralConvertor<T, argSize> a;
using LiteralType = typename ParamLiteralConvertor<T, argSize>::LiteralType;
using LiteralType =
typename ParamLiteralConvertor<T, argSize>::LiteralType;
for (index i = 0; i < argSize; i++)
a[i] = static_cast<LiteralType>(fromArgs(w, args, a[0], 0));
@ -480,9 +531,10 @@ class FluidSCWrapper : public impl::FluidSCWrapperBase<C>
template <size_t N, typename T>
using ControlSetter = Setter<FloatControlsIter&, N, T>;
static void doVersion(Unit *, sc_msg_iter *)
static void doVersion(Unit*, sc_msg_iter*)
{
std::cout << "Fluid Corpus Manipualtion Toolkit version " << fluidVersion() << '\n';
std::cout << "Fluid Corpus Manipualtion Toolkit version " << fluidVersion()
<< '\n';
}
@ -490,24 +542,21 @@ public:
using Client = C;
using ParameterSetType = typename C::ParamSetType;
FluidSCWrapper()
{
impl::FluidSCWrapperBase<Client>::init();
}
FluidSCWrapper() { impl::FluidSCWrapperBase<Client>::init(); }
static const char *getName(const char *setName = nullptr)
static const char* getName(const char* setName = nullptr)
{
static const char *name = nullptr;
static const char* name = nullptr;
return (name = setName ? setName : name);
}
static InterfaceTable *getInterfaceTable(InterfaceTable *setTable = nullptr)
static InterfaceTable* getInterfaceTable(InterfaceTable* setTable = nullptr)
{
static InterfaceTable *ft = nullptr;
static InterfaceTable* ft = nullptr;
return (ft = setTable ? setTable : ft);
}
static void setup(InterfaceTable *ft, const char *name)
static void setup(InterfaceTable* ft, const char* name)
{
getName(name);
getInterfaceTable(ft);
@ -515,23 +564,28 @@ public:
ft->fDefineUnitCmd(name, "version", doVersion);
}
static auto& setParams(ParameterSetType& p, bool verbose, World* world, FloatControlsIter& inputs, bool constrain = false)
static auto& setParams(ParameterSetType& p, bool verbose, World* world,
FloatControlsIter& inputs, bool constrain = false)
{
//We won't even try and set params if the arguments don't match
if(inputs.size() == C::getParameterDescriptors().count())
// We won't even try and set params if the arguments don't match
if (inputs.size() == C::getParameterDescriptors().count())
{
p.template setParameterValues<ControlSetter>(verbose, world, inputs);
if (constrain) p.constrainParameterValues();
}
else
{
p.template setParameterValues<ControlSetter>(verbose, world, inputs);
if (constrain)p.constrainParameterValues();
} else {
std::cout << "ERROR: " << getName() << ": parameter count mismatch. Perhaps your binary plugins and SC sources are different versions\n";
//TODO: work out how to bring any further work to a halt
std::cout << "ERROR: " << getName()
<< ": parameter count mismatch. Perhaps your binary plugins "
"and SC sources are different versions\n";
// TODO: work out how to bring any further work to a halt
}
return p;
}
};
template <template<typename T> class Client>
void makeSCWrapper(const char *name, InterfaceTable *ft)
template <template <typename T> class Client>
void makeSCWrapper(const char* name, InterfaceTable* ft)
{
FluidSCWrapper<Client<float>>::setup(ft, name);
}

@ -10,12 +10,12 @@ under the European Unions Horizon 2020 research and innovation programme
#pragma once
#include <SC_PlugIn.h>
#include <SC_Errors.h>
#include <boost/align/aligned_alloc.hpp>
#include <cctype>
#include <data/FluidTensor.hpp>
#include <clients/common/BufferAdaptor.hpp>
#include <data/FluidTensor.hpp>
#include <SC_Errors.h>
#include <SC_PlugIn.h>
#include <cctype>
#include <fstream>
#include <iostream>
#include <sstream>
@ -23,20 +23,16 @@ under the European Unions Horizon 2020 research and innovation programme
#include <vector>
namespace fluid
{
namespace client
{
namespace fluid {
namespace client {
/**
A descendent of SndBuf that will populate itself
from the NRT mirror buffers given a world and a bufnum
**/
struct NRTBuf {
NRTBuf(SndBuf *b)
: mBuffer(b)
{
}
NRTBuf(World *world, index bufnum, bool rt = false)
struct NRTBuf
{
NRTBuf(SndBuf* b) : mBuffer(b) {}
NRTBuf(World* world, index bufnum, bool rt = false)
: NRTBuf(rt ? World_GetBuf(world, static_cast<uint32>(bufnum))
: World_GetNRTBuf(world, static_cast<uint32>(bufnum)))
{
@ -45,7 +41,7 @@ struct NRTBuf {
}
protected:
SndBuf *mBuffer;
SndBuf* mBuffer;
};
/**
@ -67,27 +63,24 @@ protected:
class SCBufferAdaptor : public NRTBuf, public client::BufferAdaptor
{
public:
// SCBufferAdaptor() = delete;
SCBufferAdaptor(const SCBufferAdaptor &) = delete;
SCBufferAdaptor& operator=(const SCBufferAdaptor &) = delete;
// SCBufferAdaptor() = delete;
SCBufferAdaptor(const SCBufferAdaptor&) = delete;
SCBufferAdaptor& operator=(const SCBufferAdaptor&) = delete;
SCBufferAdaptor(SCBufferAdaptor&&) = default;
SCBufferAdaptor& operator=(SCBufferAdaptor&&) = default;
SCBufferAdaptor(index bufnum,World *world, bool rt = false)
: NRTBuf(world, bufnum, rt)
, mBufnum(bufnum)
, mWorld(world)
{
}
SCBufferAdaptor(index bufnum, World* world, bool rt = false)
: NRTBuf(world, bufnum, rt), mBufnum(bufnum), mWorld(world)
{}
~SCBufferAdaptor(){ cleanUp(); }
~SCBufferAdaptor() { cleanUp(); }
void assignToRT(World *rtWorld)
void assignToRT(World* rtWorld)
{
SndBuf *rtBuf = World_GetBuf(rtWorld, static_cast<uint32>(mBufnum));
*rtBuf = *mBuffer;
SndBuf* rtBuf = World_GetBuf(rtWorld, static_cast<uint32>(mBufnum));
*rtBuf = *mBuffer;
rtWorld->mSndBufUpdates[mBufnum].writes++;
}
@ -108,18 +101,14 @@ public:
// knows about
bool valid() const override
{
return (mBuffer && mBufnum >= 0 && mBufnum < asSigned(mWorld->mNumSndBufs));
return (mBuffer && mBufnum >= 0 && mBufnum < asSigned(mWorld->mNumSndBufs));
}
bool exists() const override
{
return true;
}
bool exists() const override { return true; }
FluidTensorView<float, 1> samps(index channel) override
{
FluidTensorView<float, 2> v{mBuffer->data, 0,
mBuffer->frames,
FluidTensorView<float, 2> v{mBuffer->data, 0, mBuffer->frames,
mBuffer->channels};
return v.col(channel);
@ -128,8 +117,7 @@ public:
FluidTensorView<float, 1> samps(index offset, index nframes,
index chanoffset) override
{
FluidTensorView<float, 2> v{mBuffer->data, 0,
mBuffer->frames,
FluidTensorView<float, 2> v{mBuffer->data, 0, mBuffer->frames,
mBuffer->channels};
return v(fluid::Slice(offset, nframes), fluid::Slice(chanoffset, 1)).col(0);
@ -137,18 +125,16 @@ public:
FluidTensorView<const float, 1> samps(index channel) const override
{
FluidTensorView<const float, 2> v{mBuffer->data, 0,
mBuffer->frames,
FluidTensorView<const float, 2> v{mBuffer->data, 0, mBuffer->frames,
mBuffer->channels};
return v.col(channel);
}
FluidTensorView<const float, 1> samps(index offset, index nframes,
index chanoffset) const override
index chanoffset) const override
{
FluidTensorView<const float, 2> v{mBuffer->data, 0,
mBuffer->frames,
FluidTensorView<const float, 2> v{mBuffer->data, 0, mBuffer->frames,
mBuffer->channels};
return v(fluid::Slice(offset, nframes), fluid::Slice(chanoffset, 1)).col(0);
@ -165,19 +151,24 @@ public:
return valid() ? this->mBuffer->channels : 0;
}
double sampleRate() const override { return valid() ? mBuffer->samplerate : 0; }
double sampleRate() const override
{
return valid() ? mBuffer->samplerate : 0;
}
std::string asString() const override { return std::to_string(bufnum()); }
std::string asString() const override { return std::to_string(bufnum()); }
const Result resize(index frames, index channels, double sampleRate) override
{
SndBuf *thisThing = mBuffer;
mOldData = thisThing->data;
int allocResult = mWorld->ft->fBufAlloc(mBuffer, static_cast<int>(channels), static_cast<int>(frames), sampleRate);
SndBuf* thisThing = mBuffer;
mOldData = thisThing->data;
int allocResult =
mWorld->ft->fBufAlloc(mBuffer, static_cast<int>(channels),
static_cast<int>(frames), sampleRate);
Result r;
if(allocResult != kSCErr_None)
if (allocResult != kSCErr_None)
{
r.set(Result::Status::kError);
r.addMessage("Resize on buffer ", bufnum(), " failed.");
@ -186,17 +177,16 @@ public:
}
index bufnum() const { return mBufnum; }
void realTime(bool rt) { mRealTime = rt; }
void realTime(bool rt) { mRealTime = rt; }
protected:
bool mRealTime{false};
float *mOldData{0};
index mBufnum;
World *mWorld;
bool mRealTime{false};
float* mOldData{0};
index mBufnum;
World* mWorld;
};
std::ostream& operator <<(std::ostream& os, SCBufferAdaptor& b)
std::ostream& operator<<(std::ostream& os, SCBufferAdaptor& b)
{
return os << b.bufnum();
}

Loading…
Cancel
Save