|
|
|
@ -61,72 +61,70 @@ Run when done
|
|
|
|
EXAMPLES::
|
|
|
|
EXAMPLES::
|
|
|
|
|
|
|
|
|
|
|
|
code::
|
|
|
|
code::
|
|
|
|
|
|
|
|
|
|
|
|
s.boot;
|
|
|
|
s.boot;
|
|
|
|
//Preliminaries: we want some audio, a couple of FluidDataSets, some Buffers, a FluidStandardize and a FluidPCA
|
|
|
|
//Preliminaries: we want some audio, a couple of FluidDataSets, some Buffers, a FluidStandardize and a FluidPCA
|
|
|
|
(
|
|
|
|
(
|
|
|
|
~audiofile = File.realpath(FluidBufPitch.class.filenameSymbol).dirname +/+ "../AudioFiles/Tremblay-ASWINE-ScratchySynth-M.wav";
|
|
|
|
~audiofile = File.realpath(FluidBufPitch.class.filenameSymbol).dirname +/+ "../AudioFiles/Tremblay-ASWINE-ScratchySynth-M.wav";
|
|
|
|
~raw = FluidDataSet(s,\pca_help_12D);
|
|
|
|
~raw = FluidDataSet(s,\pca_help_12D);
|
|
|
|
|
|
|
|
~standardized = FluidDataSet(s,\pca_help_12Ds);
|
|
|
|
~reduced = FluidDataSet(s,\pca_help_2D);
|
|
|
|
~reduced = FluidDataSet(s,\pca_help_2D);
|
|
|
|
~audio = Buffer.read(s,~audiofile);
|
|
|
|
~audio = Buffer.read(s,~audiofile);
|
|
|
|
~mfcc_feature = Buffer.new(s);
|
|
|
|
~mfcc_feature = Buffer.new(s);
|
|
|
|
~stats = Buffer.new(s);
|
|
|
|
~stats = Buffer.alloc(s, 7, 12);
|
|
|
|
~datapoint = Buffer.alloc(s,12);
|
|
|
|
~datapoint = Buffer.alloc(s, 12);
|
|
|
|
~standardizer = FluidStandardize(s);
|
|
|
|
~standardizer = FluidStandardize(s);
|
|
|
|
~pca = FluidPCA(s);
|
|
|
|
~pca = FluidPCA(s);
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
// Do a mfcc analysis on the audio, which gives us 13 points, and we'll throw the 0th away
|
|
|
|
|
|
|
|
// Divide the time series in to 100, and take the mean of each segment and add this as a point to
|
|
|
|
// Load audio and run an mfcc analysis, which gives us 13 points (we'll throw the 0th away)
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
~audio = Buffer.read(s,~audiofile);
|
|
|
|
|
|
|
|
FluidBufMFCC.process(s,~audio, features: ~mfcc_feature);
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Divide the time series in 100, and take the mean of each segment and add this as a point to
|
|
|
|
// the 'raw' FluidDataSet
|
|
|
|
// the 'raw' FluidDataSet
|
|
|
|
(
|
|
|
|
(
|
|
|
|
~raw.clear;
|
|
|
|
{
|
|
|
|
~norm.clear;
|
|
|
|
var trig = LocalIn.kr(1, 1);
|
|
|
|
FluidBufMFCC.process(s,~audio,features:~mfcc_feature,action:{
|
|
|
|
var buf = LocalBuf(12, 1);
|
|
|
|
"MFCC analysis.complete. Doing stats".postln;
|
|
|
|
var count = PulseCount.kr(trig) - 1;
|
|
|
|
fork{
|
|
|
|
var chunkLen = (~mfcc_feature.numFrames / 100).asInteger;
|
|
|
|
var chunkLen = (~mfcc_feature.numFrames / 100).asInteger;
|
|
|
|
var stats = FluidBufStats.kr(
|
|
|
|
100.do{ |i|
|
|
|
|
source: ~mfcc_feature, startFrame: count * chunkLen,
|
|
|
|
s.sync; FluidBufStats.process(s,~mfcc_feature,startFrame:i*chunkLen,numFrames:chunkLen,startChan:1, stats:~stats, action:{
|
|
|
|
startChan:1, numFrames: chunkLen, stats: ~stats, trig: trig
|
|
|
|
~stats.loadToFloatArray(action:{ |statsdata|
|
|
|
|
);
|
|
|
|
[statsdata[0],statsdata[1]].postln;
|
|
|
|
var rd = BufRd.kr(12, ~stats, DC.kr(0), 0, 1);
|
|
|
|
~datapoint.setn(0,[statsdata[0],statsdata[1]]);
|
|
|
|
var bufWr, dsWr;
|
|
|
|
s.sync;
|
|
|
|
12.do{|i|
|
|
|
|
("Adding point" ++ i).postln;
|
|
|
|
bufWr = BufWr.kr(rd[i], buf, DC.kr(i));
|
|
|
|
~raw.addPoint(i,~datapoint);
|
|
|
|
};
|
|
|
|
})
|
|
|
|
dsWr = FluidDataSetWr.kr(\pca_help_12D, buf: buf, trig: Done.kr(stats));
|
|
|
|
});
|
|
|
|
LocalOut.kr( Done.kr(dsWr));
|
|
|
|
if(i == 99) {"Analysis done, dataset ready".postln}
|
|
|
|
FreeSelf.kr(count - 98);
|
|
|
|
}
|
|
|
|
}.play;
|
|
|
|
}
|
|
|
|
|
|
|
|
});
|
|
|
|
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//First standardize our dataset, so that the MFCC dimensions are on comensurate scales
|
|
|
|
//First standardize our dataset, so that the MFCC dimensions are on comensurate scales
|
|
|
|
//Then apply the PCA in-place on the standardized data
|
|
|
|
//Then apply the PCA in-place on the standardized data
|
|
|
|
//Download the dataset contents into an array for plotting
|
|
|
|
//Download the dataset contents into an array for plotting
|
|
|
|
(
|
|
|
|
(
|
|
|
|
~standardizer.fit(~raw);
|
|
|
|
~reducedarray = Array.new(100);
|
|
|
|
~standardizer.transform(~raw, ~reduced);
|
|
|
|
~standardizer.fitTransform(~raw, ~standardized);
|
|
|
|
~pca.fitTransform(~raw,~reduced,2);
|
|
|
|
~pca.fitTransform(~standardized, ~reduced, 2, action:{
|
|
|
|
~reducedarray= Array.new(100);
|
|
|
|
~reduced.dump{|x| 100.do{|i|
|
|
|
|
fork{
|
|
|
|
~reducedarray.add(x["data"][i.asString])
|
|
|
|
100.do{|i|
|
|
|
|
}};
|
|
|
|
~reduced.getPoint(i,~datapoint,{
|
|
|
|
});
|
|
|
|
|
|
|
|
|
|
|
|
~datapoint.loadToFloatArray(action:{|a| ~reducedarray.add(Array.newFrom(a))})
|
|
|
|
|
|
|
|
});
|
|
|
|
|
|
|
|
s.sync;
|
|
|
|
|
|
|
|
if(i==99){"Data downloaded".postln};
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//Visualise the 2D projection of our original 12D data
|
|
|
|
//Visualise the 2D projection of our original 12D data
|
|
|
|
(
|
|
|
|
(
|
|
|
|
d = ~reducedarray.flatten(1).unlace.deepCollect(1, { |x| x.normalize});
|
|
|
|
d = ~reducedarray.flatten(1).unlace.deepCollect(1, { |x| x.normalize});
|
|
|
|
// d = [20.collect{1.0.rand}, 20.collect{1.0.rand}];
|
|
|
|
|
|
|
|
w = Window("scatter", Rect(128, 64, 200, 200));
|
|
|
|
w = Window("scatter", Rect(128, 64, 200, 200));
|
|
|
|
w.drawFunc = {
|
|
|
|
w.drawFunc = {
|
|
|
|
Pen.use {
|
|
|
|
Pen.use {
|
|
|
|
@ -142,5 +140,4 @@ w.drawFunc = {
|
|
|
|
w.refresh;
|
|
|
|
w.refresh;
|
|
|
|
w.front;
|
|
|
|
w.front;
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
::
|
|
|
|
::
|
|
|
|
|