comments added, ted's TODO added in folder

nix
Ted Moore 4 years ago
parent 3f3b3c01f9
commit a4c662952f

@ -1,5 +1,5 @@
(
Window.closeAll;
// Window.closeAll;
s.waitForBoot{
Task{
@ -14,11 +14,13 @@ s.waitForBoot{
s.sync;
FluidBufAmpSlice.process(s,buf,indices:slicepoints,fastRampUp:10,fastRampDown:2205,slowRampUp:4410,slowRampDown:4410,onThreshold:10,offThreshold:5,floor:-40,minSliceLength:4410,highPassFreq:20).wait;
FluidBufAmpSlice.processBlocking(s,buf,indices:slicepoints,fastRampUp:10,fastRampDown:2205,slowRampUp:4410,slowRampDown:4410,onThreshold:10,offThreshold:5,floor:-40,minSliceLength:4410,highPassFreq:20);
// slice the drums buffer based on amplitude
// the samples at which slices are detected will be written into the "slicepoints" buffer
FluidWaveform(buf,slicepoints,Rect(0,0,1600,400));
s.sync;
FluidWaveform(buf,slicepoints,bounds:Rect(0,0,1600,400));
// plot the drums buffer with the slicepoints overlayed
slicepoints.loadToFloatArray(action:{ // bring the values in the slicepoints buffer from the server to the language as a float array

@ -1,15 +1,27 @@
s.boot;
// 1. Load a folder of sounds
(
// 1. define a function to load a folder of sounds
~load_folder = {
arg folder_path, action;
var loader = FluidLoadFolder(folder_path);
loader.play(s,{
"loaded % soundfiles".format(loader.index.size).postln;
action.(loader.buffer);
fork{
var mono_buffer = Buffer.alloc(s,loader.buffer.numFrames); // convert to mono for ease of use for this example
FluidBufCompose.processBlocking(s,loader.buffer,destination:mono_buffer,numChans:1);
s.sync;
action.(mono_buffer);
}
});
};
// 2. Slice
~load_folder.(File.realpath(FluidBufPitch.class.filenameSymbol).dirname.withTrailingSlash ++ "../AudioFiles/",{
arg buffer;
"mono buffer: %".format(buffer).postln;
~buffer = buffer;
});
)
(
// 2. define a function to slice the sounds, play with the threshold to get different results
~slice = {
arg buffer, action;
Routine{
@ -22,40 +34,57 @@ s.boot;
});
}.play;
};
// 3. Analyze
~slice.(~buffer,{
arg buffer, indices;
~indices = indices;
});
)
(
// 3. analyze the slices
~analyze = {
arg buffer, indices, action;
var time = SystemClock.seconds;
Routine{
var feature_buf = Buffer(s);
var stats_buf = Buffer(s);
var point_buf = Buffer(s);
var cond = Condition.new;
var ds = FluidDataSet(s);
s.sync;
indices.loadToFloatArray(action:{
arg fa;
fa.doAdjacentPairs{
arg start, end, i;
var num = end - start;
// === PICK YOUR ANALYSIS (JUST CHOOSE 1) ===
FluidBufMFCC.process(s,buffer,start,num,features:feature_buf,numCoeffs:13,startCoeff:1).wait;
// FluidBufChroma.process(s,~loader.buffer,start,num,features:feature_buf).wait;
// FluidBufSpectralShape.process(s,buffer,start,num,features:feature_buf).wait;
//FluidBufPitch.process(s,buffer,start,num,features:feature_buf).wait;
FluidBufStats.process(s,feature_buf,stats:stats_buf).wait;
FluidBufFlatten.process(s,stats_buf,numFrames:1,destination:point_buf).wait;
FluidBufMFCC.processBlocking(s,buffer,start,num,features:feature_buf,numCoeffs:13,startCoeff:1);
FluidBufStats.processBlocking(s,feature_buf,stats:stats_buf);
FluidBufFlatten.processBlocking(s,stats_buf,numFrames:1,destination:point_buf);
ds.addPoint("slice-%".format(i),point_buf);
"% / % done".format(i+1,indices.numFrames-1).postln;
"Processing Slice % / %".format(i+1,indices.numFrames-1).postln;
};
s.sync;
feature_buf.free; stats_buf.free; point_buf.free;
ds.print;
"Completed in % seconds".format(SystemClock.seconds - time).postln;
action.(buffer,indices,ds);
});
}.play;
};
~analyze.(~buffer,~indices,{
arg buffer, indices, ds;
~ds = ds;
});
)
(
// 4. Reduce to 2 Dimensions
~umap = {
arg buffer, indices, ds, action, numNeighbours = 15, minDist = 0.1;
@ -76,6 +105,14 @@ s.boot;
});
}.play;
};
~umap.(~buffer,~indices,~ds,{
arg buffer, indices, redux_ds;
~ds = redux_ds;
});
)
(
// 5. Gridify if Desired
~grid = {
arg buffer, indices, redux_ds, action;
@ -95,6 +132,14 @@ s.boot;
});
}.play;
};
~grid.(~buffer,~indices,~ds,{
arg buffer, indices, grid_ds;
~ds = grid_ds;
});
)
(
// 6. Plot
~plot = {
arg buffer, indices, redux_ds, action;
@ -131,7 +176,9 @@ s.boot;
var dur_samps = Index.kr(indices,index + 1) - startPos;
var sig = PlayBuf.ar(1,buffer,BufRateScale.ir(buffer),startPos:startPos);
var dur_sec = dur_samps / BufSampleRate.ir(buffer);
var env = EnvGen.kr(Env([0,1,1,0],[0.03,dur_sec-0.06,0.03]),doneAction:2);
var env;
dur_sec = min(dur_sec,1);
env = EnvGen.kr(Env([0,1,1,0],[0.03,dur_sec-0.06,0.03]),doneAction:2);
sig.dup * env;
}.play;
});
@ -143,25 +190,9 @@ s.boot;
});
}.play;
};
)
~load_folder.("/Users/macprocomputer/Desktop/_flucoma/favs mono fewer/");
~slice.();
~indices.postln;
FluidWaveform(~loader.buffer,~indices);
~analyze.();
~umap.();
~grid.();
~plot.();
FluidLabelSet
~plot.(~buffer,~indices,~ds);
)
// ============== do all of it =======================
(

@ -0,0 +1,295 @@
/*
this script shows how to
1. load a folder of sounds
2. find smaller time segments within the sounds according to novelty
3. analyse the sounds according to MFCC and add these analyses to a dataset
4. dimensionally reduce that dataset to 2D using umap
5. (optional) turn the plot of points in 2D into a grid
6. plot the points!
notice that each step in this process is created within a function so that
at the bottom of the patch, these functions are all chained together to
do the whole process in one go!
*/
(
// 1. load a folder of sounds
~load_folder = {
arg folder_path, action;
var loader = FluidLoadFolder(folder_path); // pass in the folder to load
loader.play(s,{ // play will do the actual loading
var mono_buffer = Buffer.alloc(s,loader.buffer.numFrames);
FluidBufCompose.processBlocking(s,loader.buffer,destination:mono_buffer,numChans:1,action:{
action.(mono_buffer);
});
});
};
// this will load all the audio files that are included with the flucoma toolkit, but you can put your own path here:
~load_folder.(File.realpath(FluidBufPitch.class.filenameSymbol).dirname.withTrailingSlash ++ "../AudioFiles/",{
arg buffer;
"mono buffer: %".format(buffer).postln;
~buffer = buffer; // save the buffer to a global variable so we can use it later
});
)
(
// 2. slice the sounds
~slice = {
arg buffer, action;
var indices = Buffer(s); // a buffer for saving the discovered indices into
// play around the the threshold anad feature (see help file) to get differet slicing results
FluidBufNoveltySlice.processBlocking(s,buffer,indices:indices,feauture:0,threshold:0.5,action:{
"% slices found".format(indices.numFrames).postln;
"average duration in seconds: %".format(buffer.duration/indices.numFrames).postln;
action.(buffer,indices);
});
};
~slice.(~buffer,{
arg buffer, indices;
~indices = indices;
});
)
// you may want to check the slice points here using FluidWaveform
FluidWaveform(~buffer,~indices); // it may also be way too many slices to see properly!
(
// 3. analyze the slices
~analyze = {
arg buffer, indices, action;
var time = SystemClock.seconds; // a timer just to keep tabs on how long this stuff is taking
Routine{
var feature_buf = Buffer(s); // a buffer for storing the mfcc analyses into
var stats_buf = Buffer(s); // a buffer for storing the stats into
var point_buf = Buffer(s); // a buffer we will use to add points to the dataset
var ds = FluidDataSet(s); // the dataset that we'll add all these mfcc analyses to
// bring the values in the slicepoints buffer from the server to the language as a float array
indices.loadToFloatArray(action:{
arg fa; // float array
fa.doAdjacentPairs{
/*
take each of the adjacent pairs and pass them to this function as an array of 2 values
nb. for example [0,1,2,3,4] will execute this function 4 times, passing these 2 value arrays:
[0,1]
[1,2]
[2,3]
[3,4]
this will give us each slice point *and* the next slice point so that we
can tell the analyzers where to start analyzing and how many frames to analyze
*/
arg start, end, i;
// the next slice point minus the current one will give us the difference how many slices to analyze)
var num = end - start;
/* analyze the drum buffer starting at `start_samps` and for `num_samps` samples
this returns a buffer (feautre_buf) that is 13 channels wide (for the 13 mfccs, see helpfile) and
however many frames long as there are fft frames in the slice */
FluidBufMFCC.processBlocking(s,buffer,start,num,features:feature_buf,numCoeffs:13,startCoeff:1);
/* perform a statistical analysis on the mfcc analysis
this will return just 13 channels, one for each mfcc channel in the feature_buf.
each channel will have 7 frames corresponding to the 7 statistical analyses that it performs
on that channel */
FluidBufStats.processBlocking(s,feature_buf,stats:stats_buf);
/* take all 13 channels from stats_buf, but just the first frame (mean) and convert it into a buffer
that is 1 channel and 13 frames. this shape will be considered "flat" and therefore able to be
added to the dataset */
FluidBufFlatten.processBlocking(s,stats_buf,numFrames:1,destination:point_buf);
// add it
ds.addPoint("slice-%".format(i),point_buf);
"Processing Slice % / %".format(i+1,indices.numFrames-1).postln;
};
s.sync;
feature_buf.free; stats_buf.free; point_buf.free; // free buffers
ds.print;
"Completed in % seconds".format(SystemClock.seconds - time).postln;
action.(buffer,indices,ds);
});
}.play;
};
~analyze.(~buffer,~indices,{
arg buffer, indices, ds;
~ds = ds;
});
)
(
// 4. Reduce to 2 Dimensions
~umap = {
arg buffer, indices, ds, action, numNeighbours = 15, minDist = 0.1;
Routine{
// get all the dimensions in the same general range so that when umap
// makes its initial tree structure, the lower order mfcc coefficients
// aren't over weighted
var standardizer = FluidStandardize(s);
// this is the dimensionality reduction algorithm, see helpfile for
// more info
var umap = FluidUMAP(s,2,numNeighbours,minDist);
var redux_ds = FluidDataSet(s); // a new dataset for putting the 2D points into
s.sync;
standardizer.fitTransform(ds,redux_ds,{
"standardization done".postln;
umap.fitTransform(redux_ds,redux_ds,{
"umap done".postln;
action.(buffer,indices,redux_ds);
});
});
}.play;
};
~umap.(~buffer,~indices,~ds,{
arg buffer, indices, redux_ds;
~ds = redux_ds;
});
)
(
// 5. Gridify if Desired
~grid = {
arg buffer, indices, redux_ds, action;
Routine{
// first normalize so they're all 0 to 1
var normer = FluidNormalize(s);
// this will shift all dots around so they're in a grid shape
var grider = FluidGrid(s);
// a new dataset to hold the gridified dots
var newds = FluidDataSet(s);
s.sync;
normer.fitTransform(redux_ds,newds,{
"normalization done".postln;
grider.fitTransform(newds,newds,{
"grid done".postln;
action.(buffer,indices,newds);
});
});
}.play;
};
~grid.(~buffer,~indices,~ds,{
arg buffer, indices, grid_ds;
~ds = grid_ds;
});
)
(
// 6. Plot
~plot = {
arg buffer, indices, redux_ds, action;
Routine{
var kdtree = FluidKDTree(s); // tree structure of the 2D points for fast neighbour lookup
// a buffer for putting the 2D mouse point into so that it can be used to find the nearest neighbour
var buf_2d = Buffer.alloc(s,2);
// scaler just to double check and make sure that the points are 0 to 1
// if the plotter is receiving the output of umap, they probably won't be...
var scaler = FluidNormalize(s);
// a new dataset told the normalized data
var newds = FluidDataSet(s);
s.sync;
scaler.fitTransform(redux_ds,newds,{
"scaling done".postln;
kdtree.fit(newds,{
"kdtree fit".postln;
newds.dump({
arg dict;
var previous, fp;
"ds dumped".postln;
// pass in the dict from the dumped dataset. this is the data that we want to plot!
fp = FluidPlotter(nil,Rect(0,0,800,800),dict,mouseMoveAction:{
// when the mouse is clicked or dragged on the plotter, this function executes
// the view is the FluidPlotter, the x and y are the position of the mouse according
// to the range of the plotter. i.e., since our plotter is showing us the range 0 to 1
// for both x and y, the xy positions will always be between 0 and 1
arg view, x, y;
buf_2d.setn(0,[x,y]); // set the mouse position into a buffer
// then send that buffer to the kdtree to find the nearest point
kdtree.kNearest(buf_2d,{
arg nearest; // the identifier of the nearest point is returned (always as a symbol)
if(previous != nearest,{ // as long as this isn't also the last one that was returned
// split the integer off the indentifier to know how to look it up for playback
var index = nearest.asString.split($-)[1].asInteger;
previous = nearest;
nearest.postln;
// index.postln;
{
var startPos = Index.kr(indices,index); // look in the indices buf to see where to start playback
var dur_samps = Index.kr(indices,index + 1) - startPos; // and how long
var sig = PlayBuf.ar(1,buffer,BufRateScale.ir(buffer),startPos:startPos);
var dur_sec = dur_samps / BufSampleRate.ir(buffer);
var env;
dur_sec = min(dur_sec,1); // just in case some of the slices are *very* long...
env = EnvGen.kr(Env([0,1,1,0],[0.03,dur_sec-0.06,0.03]),doneAction:2);
sig.dup * env;
}.play;
});
});
});
action.(fp,newds);
});
});
});
}.play;
};
~plot.(~buffer,~indices,~ds);
)
// ============== do all of it in one go =======================
(
var path = File.realpath(FluidBufPitch.class.filenameSymbol).dirname.withTrailingSlash ++ "../AudioFiles/";
~load_folder.(path,{
arg buffer0;
~slice.(buffer0,{
arg buffer1, indices1;
~analyze.(buffer1, indices1,{
arg buffer2, indices2, ds2;
~umap.(buffer2,indices2,ds2,{
arg buffer3, indices3, ds3;
~plot.(buffer3,indices3,ds3,{
arg plotter;
"done with all".postln;
~fp = plotter;
});
});
});
});
});
)

@ -0,0 +1,7 @@
NMFBuf Filter Morph Match Cross
HPSS *Buf
MDS
SpectralShape *Buf
Transients & Buf* & Slice*
Loading…
Cancel
Save