Merge branch 'feature/named+rolling' into fix/mlp-issues+named

nix
Owen Green 4 years ago
commit a2f66aedc5

@ -2,22 +2,22 @@ FluidStats : MultiOutUGen {
var <channels;
*kr { arg inputs;
// ^super.new.rate_('control').inputs_(inputs.asArray++0).initOutputs(inputs.asArray.size);
^this.new1('control',inputs);
*kr { arg inputsArray, size;
^this.multiNew('control',*(inputsArray.asArray++size));
}
init {arg ...theInputs;
inputs = theInputs ++ 0;
^this.initOutputs(inputs.asArray.size - 1,rate);
inputs = theInputs;
this.specialIndex = (inputs.size - 2).max(0);
this.specialIndex.postln;
^this.initOutputs(inputs.size - 1,rate);
}
checkInputs {
/* if(inputs.any.rate != 'control') {
^"input array input is not control rate";
};*/
this.specialIndex = (inputs.size - 2).min(0);
this.specialIndex.postln;
^this.checkValidInputs;
}
@ -28,24 +28,10 @@ FluidStats : MultiOutUGen {
};
channels = Array.fill(numChans * 2, { |i|
// Array.fill(numChans,{ |j|
OutputProxy('control',this,i);
});
// });
^channels;
^channels.reshape(2,numChans);
}
// synthIndex_ { arg index;
// synthIndex = index;
// channels.do{
// arg outputGroup;
// outputGroup.do{
// arg output;
// output.synthIndex_(index);
// }
// }
// }
numOutputs { ^(channels.size); }
}

@ -0,0 +1,47 @@
TITLE:: FluidStats
summary:: Rolling mean and standard devication on kr inputs
categories:: Libraries>FluidCorpusManipulation
related:: Classes/FluidBufStats, Classes/FluidStandardize
DESCRIPTION::
Computes the rolling mean and sample standard deviation over a given window for multichannel kr inputs.
This UGen does not perform multichannel expansion because (like link::Classes/BufWr::) it takes an array as input.
CLASSMETHODS::
METHOD:: kr
Run the UGen
ARGUMENT:: inputsArray
An array (or just one) kr input stream.
ARGUMENT:: size
The size of the history window to use
returns:: A 2D array of kr outputs code::[[means][standard deviations]]::
INSTANCEMETHODS::
PRIVATE:: numOutputs, initOutputs, init, channels,checkInputs
EXAMPLES::
code::
(
~gaussianNoise = { |a,b|
var mag = (-2 * a.abs.log).sqrt;
var f = 2 * pi * b.abs;
[mag * f.cos, mag * f.sin]
}
{
var src = ~gaussianNoise.value(WhiteNoise.kr,WhiteNoise.kr);
var stats = FluidStats.kr(src,20);
stats[0].poll(label:'means');
stats[1].poll(label:'standard deviations');
}.play
)
::
Loading…
Cancel
Save