added wording for multithreading reference, sorts issue #37

nix
Pierre Alexandre Tremblay 6 years ago
parent 380afc6970
commit 9de3853742

@ -10,6 +10,10 @@ FluidAmpSlice is based on two envelop followers on a highpassed version of the s
The process will return a two-channel buffer with the addresses of the onset on the first channel, and the address of the offset on the second channel.
STRONG::Threading::
By default, this UGen spawns a new thread to avoid blocking the server command queue, so it is free to go about with its business. For a more detailed discussion of the available threading and monitoring options, including the two undocumented Class Methods below (.processBlocking and .kr) please read the guide LINK::Guides/FluidBufMultiThreading::.
CLASSMETHODS::
METHOD:: process

@ -3,7 +3,6 @@ SUMMARY:: Buffer Compositing Utility
CATEGORIES:: Libraries>FluidDecomposition, UGens>Buffer
RELATED:: Guides/FluCoMa, Guides/FluidDecomposition, Classes/Buffer
DESCRIPTION::
A FluidBufCompose object provides a flexible utility for combining the contents of buffers on the server. It can be used for thing like mixing down multichannel buffers, or converting from left-right stereo to mid-side. It is used extensively in all the example code of LINK::Guides/FluidDecomposition:: as part of the FluCoMa project. footnote::
This was made possible thanks to the FluCoMa project ( http://www.flucoma.org/ ) funded by the European Research Council ( https://erc.europa.eu/ ) under the European Unions Horizon 2020 research and innovation programme (grant agreement No 725899).::
@ -12,7 +11,6 @@ At its most simple, the object copies the content of a source buffer into a dest
The algorithm takes a srcBuf, and writes the information at the provided dstBuf. These buffer arguments can all point to the same buffer, which gives great flexibility in transforming and reshaping.
CLASSMETHODS::
METHOD:: process

@ -22,6 +22,9 @@ This was made possible thanks to the FluCoMa project ( http://www.flucoma.org/
More information on median filtering, and on HPSS for musicianly usage, are availabe in LINK::Guides/FluCoMa:: overview file.
STRONG::Threading::
By default, this UGen spawns a new thread to avoid blocking the server command queue, so it is free to go about with its business. For a more detailed discussion of the available threading and monitoring options, including the two undocumented Class Methods below (.processBlocking and .kr) please read the guide LINK::Guides/FluidBufMultiThreading::.
CLASSMETHODS::

@ -9,6 +9,10 @@ This class implements two loudness descriptors, computing the true peak of the s
The process will return a multichannel buffer with two channels per input channel, one for loudness and one for the true peak value of the frame, both in dBfs. More information on broadcasting standardisation of loudness measurement is available at the reference page FOOTNOTE::https://tech.ebu.ch/docs/tech/tech3341.pdf:: and in more musician-friendly explantions here FOOTNOTE::http://designingsound.org/2013/02/06/loudness-and-metering-part-1/::. Each sample represents a value, which is every hopSize. Its sampling rate is STRONG::sourceSR / hopSize::.
STRONG::Threading::
By default, this UGen spawns a new thread to avoid blocking the server command queue, so it is free to go about with its business. For a more detailed discussion of the available threading and monitoring options, including the two undocumented Class Methods below (.processBlocking and .kr) please read the guide LINK::Guides/FluidBufMultiThreading::.
CLASSMETHODS::
METHOD:: process

@ -8,6 +8,10 @@ This class implements a classic spectral descriptor, the Mel-Frequency Cepstral
The process will return a single multichannel buffer of STRONG::numCoeffs:: per input channel. Each frame represents a value, which is every hopSize.
STRONG::Threading::
By default, this UGen spawns a new thread to avoid blocking the server command queue, so it is free to go about with its business. For a more detailed discussion of the available threading and monitoring options, including the two undocumented Class Methods below (.processBlocking and .kr) please read the guide LINK::Guides/FluidBufMultiThreading::.
CLASSMETHODS::
METHOD:: process

@ -9,6 +9,10 @@ This class implements a spectral shape descriptor where the amplitude is given f
The process will return a single multichannel buffer of STRONG::numBands:: per input channel. Each frame represents a value, which is every hopSize.
STRONG::Threading::
By default, this UGen spawns a new thread to avoid blocking the server command queue, so it is free to go about with its business. For a more detailed discussion of the available threading and monitoring options, including the two undocumented Class Methods below (.processBlocking and .kr) please read the guide LINK::Guides/FluidBufMultiThreading::.
CLASSMETHODS::
METHOD:: process

@ -3,7 +3,6 @@ SUMMARY:: Buffer-Based Non-Negative Matrix Factorisation on Spectral Frames
CATEGORIES:: Libraries>FluidDecomposition, UGens>Buffer
RELATED:: Guides/FluCoMa, Guides/FluidDecomposition, Classes/FluidNMFMatch, Classes/FluidNMFFilter
DESCRIPTION::
The FluidBufNMF object decomposes the spectrum of a sound into a number of components using Non-Negative Matrix Factorisation (NMF) footnote:: Lee, Daniel D., and H. Sebastian Seung. 1999. Learning the Parts of Objects by Non-Negative Matrix Factorization. Nature 401 (6755): 78891. https://doi.org/10.1038/44565.
::. NMF has been a popular technique in signal processing research for things like source separation and transcription footnote:: Smaragdis and Brown, Non-Negative Matrix Factorization for Polyphonic Music Transcription.::, although its creative potential is so far relatively unexplored.
@ -33,6 +32,10 @@ More information on possible musicianly uses of NMF are availabe in LINK::Guides
FluidBufNMF is part of the Fluid Decomposition Toolkit of the FluCoMa project. footnote::
This was made possible thanks to the FluCoMa project ( http://www.flucoma.org/ ) funded by the European Research Council ( https://erc.europa.eu/ ) under the European Unions Horizon 2020 research and innovation programme (grant agreement No 725899). ::
STRONG::Threading::
By default, this UGen spawns a new thread to avoid blocking the server command queue, so it is free to go about with its business. For a more detailed discussion of the available threading and monitoring options, including the two undocumented Class Methods below (.processBlocking and .kr) please read the guide LINK::Guides/FluidBufMultiThreading::.
CLASSMETHODS::
METHOD:: process

@ -3,12 +3,14 @@ SUMMARY:: Buffer-Based Novelty-Based Slicer
CATEGORIES:: Libraries>FluidDecomposition, UGens>Buffer
RELATED:: Guides/FluCoMa, Guides/FluidDecomposition
DESCRIPTION::
This class implements a non-real-time slicer using an algorithm assessing novelty in the signal to estimate the slicing points. A novelty curve is being derived from running a kernel across the diagonal of the similarity matrix, and looking for peak of changes. It implements the seminal results published in 'Automatic Audio Segmentation Using a Measure of Audio Novelty' by J Foote. It is part of the Fluid Decomposition Toolkit of the FluCoMa project. footnote::This was made possible thanks to the FluCoMa project ( http://www.flucoma.org/ ) funded by the European Research Council ( https://erc.europa.eu/ ) under the European Unions Horizon 2020 research and innovation programme (grant agreement No 725899).::
The process will return a buffer which contains indices (in sample) of estimated starting points of different slices.
The process will return a buffer which contains indices (in sample) of estimated starting points of different slices.
STRONG::Threading::
By default, this UGen spawns a new thread to avoid blocking the server command queue, so it is free to go about with its business. For a more detailed discussion of the available threading and monitoring options, including the two undocumented Class Methods below (.processBlocking and .kr) please read the guide LINK::Guides/FluidBufMultiThreading::.
CLASSMETHODS::

@ -8,6 +8,10 @@ This class implements many spectral-based onset detection metrics, most of them
The process will return a buffer which contains indices (in sample) of estimated starting points of different slices.
STRONG::Threading::
By default, this UGen spawns a new thread to avoid blocking the server command queue, so it is free to go about with its business. For a more detailed discussion of the available threading and monitoring options, including the two undocumented Class Methods below (.processBlocking and .kr) please read the guide LINK::Guides/FluidBufMultiThreading::.
CLASSMETHODS::
METHOD:: process

@ -9,6 +9,10 @@ This class implements three popular pitch descriptors, computed as frequency and
The process will return a multichannel buffer with two channels per input channel, one for pitch and one for the pitch tracking confidence. Each sample represents a value, which is every hopSize. Its sampling rate is sourceSR / hopSize.
STRONG::Threading::
By default, this UGen spawns a new thread to avoid blocking the server command queue, so it is free to go about with its business. For a more detailed discussion of the available threading and monitoring options, including the two undocumented Class Methods below (.processBlocking and .kr) please read the guide LINK::Guides/FluidBufMultiThreading::.
CLASSMETHODS::
METHOD:: process

@ -13,6 +13,10 @@ This class triggers a Sinusoidal Modelling process on buffers on the non-real-ti
The whole process is based on the assumption that signal is made of pitched steady components that have a long-enough duration and are periodic enough to be perceived as such, that can be tracked, resynthesised and removed from the original, leaving behind what is considered as non-pitched, noisy, and/or transient. It first tracks the peaks, then checks if they are the continuation of a peak in previous spectral frames, by assigning them a track. More information on this model, and on how it links to musicianly thinking, are availabe in LINK::Guides/FluCoMa:: overview file.
STRONG::Threading::
By default, this UGen spawns a new thread to avoid blocking the server command queue, so it is free to go about with its business. For a more detailed discussion of the available threading and monitoring options, including the two undocumented Class Methods below (.processBlocking and .kr) please read the guide LINK::Guides/FluidBufMultiThreading::.
CLASSMETHODS::
METHOD:: process

@ -25,6 +25,10 @@ LIST::
The process will return a multichannel buffer with the seven channels per input channel, each containing the 7 shapes. Each sample represents a value, which is every hopSize.
STRONG::Threading::
By default, this UGen spawns a new thread to avoid blocking the server command queue, so it is free to go about with its business. For a more detailed discussion of the available threading and monitoring options, including the two undocumented Class Methods below (.processBlocking and .kr) please read the guide LINK::Guides/FluidBufMultiThreading::.
CLASSMETHODS::
METHOD:: process

@ -9,6 +9,10 @@ This class implements non-real-time statistical analysis on buffer channels. Typ
The process returns a buffer where each channel of the STRONG::source:: buffer has been reduced to 7 statistics: mean, standard deviation, skewness, kurtosis, followed by 3 percentiles, by default the minimum value, the median, and the maximum value. Moreover, it is possible to request the same 7 stats to be applied to derivative of the input. These are useful to describe statistically the rate of change of the time series. The STRONG::stats:: buffer will grow accordingly, yielding the seven same statistical description of the n requested derivatives. Therefore, the STRONG::stats:: buffer will have as many channel as the input buffer, and as many frames as 7 times the requested STRONG::numDerivs::.
STRONG::Threading::
By default, this UGen spawns a new thread to avoid blocking the server command queue, so it is free to go about with its business. For a more detailed discussion of the available threading and monitoring options, including the two undocumented Class Methods below (.processBlocking and .kr) please read the guide LINK::Guides/FluidBufMultiThreading::.
CLASSMETHODS::
METHOD:: process

@ -3,12 +3,14 @@ SUMMARY:: Buffer-Based Transient-Based Slicer
CATEGORIES:: Libraries>FluidDecomposition, UGens>Buffer
RELATED:: Guides/FluCoMa, Guides/FluidDecomposition, Classes/FluidBufTransients
DESCRIPTION::
This class implements a non-real-time transient-based slice extractor relying on the same algorithm than Classes/FluidBufTransients using clicks/transients/derivation/anomaly in the signal to estimate the slicing points. It is part of the Fluid Decomposition Toolkit of the FluCoMa project.footnote::This was made possible thanks to the FluCoMa project ( http://www.flucoma.org/ ) funded by the European Research Council ( https://erc.europa.eu/ ) under the European Unions Horizon 2020 research and innovation programme (grant agreement No 725899).::
The process will return a buffer which contains indices (in sample) of estimated starting points of the different slices.
STRONG::Threading::
By default, this UGen spawns a new thread to avoid blocking the server command queue, so it is free to go about with its business. For a more detailed discussion of the available threading and monitoring options, including the two undocumented Class Methods below (.processBlocking and .kr) please read the guide LINK::Guides/FluidBufMultiThreading::.
CLASSMETHODS::

@ -3,7 +3,6 @@ SUMMARY:: Buffer-Based Transient Extractor
CATEGORIES:: Libraries>FluidDecomposition, UGens>Buffer
RELATED:: Guides/FluCoMa, Guides/FluidDecomposition
DESCRIPTION::
This class triggers a transient extractor on buffers on the non-real-time thread of the server. It implements declicking algorithm from chapter 5 of the classic Digital Audio Restoration by Godsill, Simon J., Rayner, Peter J.W. with some bespoke improvements on the detection function tracking. It is part of the Fluid Decomposition Toolkit of the FluCoMa project. footnote::
This was made possible thanks to the FluCoMa project ( http://www.flucoma.org/ ) funded by the European Research Council ( https://erc.europa.eu/ ) under the European Unions Horizon 2020 research and innovation programme (grant agreement No 725899).::
@ -14,6 +13,9 @@ This was made possible thanks to the FluCoMa project ( http://www.flucoma.org/
The whole process is based on the assumption that a transient is an element that is deviating from the surrounding material, as sort of click or anomaly. The algorithm then estimates what should have happened if the signal had followed its normal path, and resynthesises this estimate, removing the anomaly which is considered as the transient. More information on signal estimation, and on its musicianly usage, are availabe in LINK::Guides/FluCoMa:: overview file.
STRONG::Threading::
By default, this UGen spawns a new thread to avoid blocking the server command queue, so it is free to go about with its business. For a more detailed discussion of the available threading and monitoring options, including the two undocumented Class Methods below (.processBlocking and .kr) please read the guide LINK::Guides/FluidBufMultiThreading::.
CLASSMETHODS::

Loading…
Cancel
Save