Deals with separation of clients and params; new FFT param type;

include/FluidSCWrapper.hpp
nix
Owen Green 7 years ago
parent 6529d6c813
commit 82c2c798c1

@ -1,4 +1,4 @@
#pragma once
#pragma once
#include "SCBufferAdaptor.hpp"
#include <clients/common/FluidBaseClient.hpp>
@ -16,7 +16,7 @@
namespace fluid {
namespace client {
template <typename Client> class FluidSCWrapper;
template <typename Client, typename Params> class FluidSCWrapper;
namespace impl {
@ -25,16 +25,8 @@ template <size_t N, typename T> struct ArgumentGetter;
template <size_t N, typename T> struct ControlGetter;
template <typename T> using msg_iter_method = T (sc_msg_iter::*)(T);
template <size_t N, typename T, msg_iter_method<T> Method> struct GetArgument
{
T operator()(World* w, sc_msg_iter *args)
{
T r = (args->*Method)(T{0});
return r;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//Iterate over kr/ir inputs via callbacks from params object
struct FloatControlsIter
{
FloatControlsIter(float** vals, size_t N):mValues(vals), mSize(N) {}
@ -46,11 +38,11 @@ struct FloatControlsIter
return f;
}
float operator[](size_t i)
{
assert(i < mSize);
return *mValues[i];
}
// float operator[](size_t i)
// {
// assert(i < mSize);
// return *mValues[i];
// }
void reset(float** vals)
{
@ -64,104 +56,118 @@ struct FloatControlsIter
size_t mCount{0};
};
//General case
template <size_t N, typename T> struct GetControl
{
T operator()(World*, FloatControlsIter& controls) { return controls[N]; }
T operator()(World*, FloatControlsIter& controls) { return controls.next(); }
};
template <size_t N> struct ArgumentGetter<N, FloatT> : public GetArgument<N, float, &sc_msg_iter::getf>
{
// ArgumentGetter() { std::cout << "FloatT @ " << N << '\n'; }
};
template <size_t N, typename T> struct ControlGetter : public GetControl<N, typename T::type>
{};
template <size_t N> struct ArgumentGetter<N, LongT> : public GetArgument<N, int32, &sc_msg_iter::geti>
//Specializations
template <size_t N> struct ControlGetter<N, BufferT>
{
// ArgumentGetter() { std::cout << "LongT @ " << N << '\n'; }
auto operator() (World* w, FloatControlsIter& iter)
{
typename LongT::type bufnum = iter.next();
return std::unique_ptr<BufferAdaptor>(bufnum >= 0 ? new SCBufferAdaptor(bufnum,w): nullptr);
}
};
template <size_t N> struct ArgumentGetter<N, EnumT> : public GetArgument<N, int32, &sc_msg_iter::geti>
template<size_t N>
struct ControlGetter<N,FloatPairsArrayT>
{
// ArgumentGetter() { std::cout << "Enum @ " << N << '\n'; }
typename FloatPairsArrayT::type operator()(World*, FloatControlsIter& iter)
{
return {{iter.next(),iter.next()},{iter.next(),iter.next()}};
}
};
template <size_t N> struct ArgumentGetter<N, BufferT>
template<size_t N>
struct ControlGetter<N,FFTParamsT>
{
// ArgumentGetter() { std::cout << "Buffer @ " << N << '\n'; }
auto operator() (World* w, sc_msg_iter *args)
typename FFTParamsT::type operator()(World*, FloatControlsIter& iter)
{
typename LongT::type bufnum = args->geti(-1);
return std::unique_ptr<BufferAdaptor>(bufnum >= 0 ? new SCBufferAdaptor(bufnum,w) : nullptr);
return {static_cast<long>(iter.next()),static_cast<long>(iter.next()),static_cast<long>(iter.next())};
}
};
template <size_t N> struct ArgumentGetter<N, FloatPairsArrayT>
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// Iterate over arguments in sc_msg_iter, via callbacks from params object
template <size_t N, typename T, msg_iter_method<T> Method> struct GetArgument
{
typename FloatPairsArrayT::type operator()(World* w, sc_msg_iter *args)
T operator()(World* w, sc_msg_iter *args)
{
return {{args->getf(),args->getf()},{args->getf(),args->getf()}};
T r = (args->*Method)(T{0});
return r;
}
};
//General cases
template <size_t N> struct ArgumentGetter<N, FloatT> : public GetArgument<N, float, &sc_msg_iter::getf>
{};
template <size_t N, typename T> struct ControlGetter : public GetControl<N, typename T::type>
template <size_t N> struct ArgumentGetter<N, LongT> : public GetArgument<N, int32, &sc_msg_iter::geti>
{};
template <size_t N> struct ArgumentGetter<N, EnumT> : public GetArgument<N, int32, &sc_msg_iter::geti>
{};
template <size_t N> struct ControlGetter<N, BufferT>
//Specializations
template <size_t N> struct ArgumentGetter<N, BufferT>
{
auto operator() (World* w, FloatControlsIter& iter)
auto operator() (World* w, sc_msg_iter *args)
{
typename LongT::type bufnum = iter.next();
return std::unique_ptr<BufferAdaptor>(bufnum >= 0 ? new SCBufferAdaptor(bufnum,w): nullptr);
typename LongT::type bufnum = args->geti(-1);
return std::unique_ptr<BufferAdaptor>(bufnum >= 0 ? new SCBufferAdaptor(bufnum,w) : nullptr);
}
};
template<size_t N>
struct ControlGetter<N,FloatPairsArrayT>
template <size_t N> struct ArgumentGetter<N, FloatPairsArrayT>
{
typename FloatPairsArrayT::type operator()(World*, FloatControlsIter& iter)
typename FloatPairsArrayT::type operator()(World* w, sc_msg_iter *args)
{
return {{iter.next(),iter.next()},{iter.next(),iter.next()}};
return {{args->getf(),args->getf()},{args->getf(),args->getf()}};
}
};
template<typename Client, typename Args, template <size_t,typename> class Fetcher>
struct ClientFactory
template <size_t N> struct ArgumentGetter<N, FFTParamsT>
{
static Client create(World* world, Args* args)
{
return createImpl(world, args, FixedParamIndices{});
}
private:
using FixedParamIndices = typename Client::FixedParams;
template<size_t N>
using ThisParamType = typename Client::template ParamDescriptorTypeAt<N>;
template<size_t...Is>
static Client createImpl(World* world, Args* args, std::index_sequence<Is...>)
typename FFTParamsT::type operator()(World* w, sc_msg_iter *args)
{
return Client{Fetcher<Is, ThisParamType<Is>>{}(world,*args)...};
return {args->geti(),args->geti(),args->geti()};
}
};
//template <size_t N, typename
template <typename Client,class Wrapper> class RealTime : public SCUnit
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//Real Time Processor
template <typename Client,class Wrapper, class Params> class RealTime : public SCUnit
{
using HostVector = FluidTensorView<float, 1>;
// using Client = typename Wrapper::ClientType;
public:
static void setup(InterfaceTable *ft, const char *name) { registerUnit<Wrapper>(ft, name); }
static void setup(InterfaceTable *ft, const char *name)
{
registerUnit<Wrapper>(ft, name);
ft->fDefineUnitCmd(name,"latency",doLatency);
}
static void doLatency(Unit *unit, sc_msg_iter *args)
{
float l[] {static_cast<float>(static_cast<Wrapper*>(unit)->mClient.latency())};
auto ft = Wrapper::getInterfaceTable();
ft->fSendNodeReply(&unit->mParent->mNode,-1,Wrapper::getName(), 1, l);
}
RealTime():
mControlsIterator{mInBuf + mSpecialIndex + 1,mNumInputs - mSpecialIndex - 1},
mClient{ClientFactory<Client,FloatControlsIter,ControlGetter>::create(mWorld,&mControlsIterator)}
mParams{*Wrapper::getParamDescriptors()},
mClient{Wrapper::setParams(mParams,mWorld->mVerbosity > 0, mWorld, mControlsIterator)}
{}
void init()
@ -196,10 +202,8 @@ public:
void next(int n)
{
Wrapper *w = static_cast<Wrapper *>(this);
// auto &client = w->client();
mControlsIterator.reset(mInBuf + mClient.audioChannelsIn());
w->setParams( mWorld->mVerbosity > 0, mWorld,mControlsIterator); // forward on inputs N + audio inputs as params
mControlsIterator.reset(mInBuf + 1); //mClient.audioChannelsIn());
Wrapper::setParams(mParams,mWorld->mVerbosity > 0, mWorld,mControlsIterator); // forward on inputs N + audio inputs as params
const Unit *unit = this;
for (int i = 0; i < mClient.audioChannelsIn(); ++i)
{
@ -222,61 +226,71 @@ private:
std::vector<HostVector> mOutputs;
FloatControlsIter mControlsIterator;
protected:
ParameterSet<Params> mParams;
Client mClient;
};
template <typename Client, typename Wrapper> class NonRealTime
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// Non Real Time Processor
template <typename Client, typename Wrapper, typename Params> class NonRealTime
{
public:
static void setup(InterfaceTable *ft, const char *name) { DefinePlugInCmd(name, launch, nullptr); }
NonRealTime(World *world,sc_msg_iter *args):
mClient{ClientFactory<Client, sc_msg_iter, ArgumentGetter>::create(world,args)}
mParams{*Wrapper::getParamDescriptors()},
mClient{mParams}
{}
void init(){};
static void launch(World *world, void *inUserData, struct sc_msg_iter *args, void *replyAddr)
{
Wrapper *w = new Wrapper(world,args); //this has to be on the heap, because it doesn't get destoryed until the async command is done
w->parseBuffers(w, world, args);
int argsPosition = args->count;
auto argsRdPos = args->rdpos;
Result result = validateParameters(w, world, args);
if (!result.ok())
{
std::cout << "FluCoMa Error " << Wrapper::getName() << ": " << result.message().c_str();
delete w;
return;
}
args->count = argsPosition;
args->rdpos = argsRdPos;
w->setParams(false, world, args);
Wrapper::setParams(w->mParams,false, world, args);
size_t msgSize = args->getbsize();
char * completionMsgData = 0;
std::vector<char> completionMessage(msgSize);
// char * completionMsgData = 0;
if (msgSize)
{
completionMsgData = (char *) world->ft->fRTAlloc(world, msgSize);
args->getb(completionMsgData, msgSize);
args->getb(completionMessage.data(), msgSize);
}
world->ft->fDoAsynchronousCommand(world, replyAddr, Wrapper::getName(), w, process, exchangeBuffers, tidyUp, destroy,
msgSize, completionMsgData);
world->ft->fDoAsynchronousCommand(world, replyAddr, Wrapper::getName(), w, process, exchangeBuffers, tidyUp, destroy,msgSize, completionMessage.data());
}
static bool process(World *world, void *data) { return static_cast<Wrapper *>(data)->process(world); }
static bool exchangeBuffers(World *world, void *data) { return static_cast<Wrapper *>(data)->exchangeBuffers(world); }
static bool tidyUp(World *world, void *data) { return static_cast<Wrapper *>(data)->tidyUp(world); }
static void destroy(World *world, void *data) { delete static_cast<Wrapper *>(data); }
static void destroy(World *world, void *data)
{
// void* c = static_cast<Wrapper *>(data)->mCompletionMessage;
// if(c) world->ft->fRTFree(world,c);
delete static_cast<Wrapper *>(data);
}
protected:
ParameterSet<Params> mParams;
Client mClient;
private:
static Result validateParameters(NonRealTime *w, World* world, sc_msg_iter *args)
{
auto &c = w->mClient;
auto results = c.template checkParameterValues<ArgumentGetter>(world, args);
auto results = w->mParams.template checkParameterValues<ArgumentGetter>(world, args);
for (auto &r : results)
{
std::cout << r.message() << '\n';
@ -285,37 +299,9 @@ private:
return {};
}
void parseBuffers(Wrapper *w, World *world, sc_msg_iter *args)
{
auto &c = mClient;
mBuffersIn.reserve(c.audioBuffersIn());
mInputs.reserve(c.audioBuffersIn());
mBuffersOut.reserve(c.audioBuffersOut());
mOutputs.reserve(c.audioBuffersOut());
for (int i = 0; i < c.audioBuffersIn(); i++)
{
mBuffersIn.emplace_back(args->geti(0), world);
mInputs.emplace_back();
mInputs[i].buffer = &mBuffersIn[i];
mInputs[i].startFrame = args->geti(0);
mInputs[i].nFrames = args->geti(0);
mInputs[i].startChan = args->geti(0);
mInputs[i].nChans = args->geti(0);
}
for (int i = 0; i < c.audioBuffersOut(); i++)
{
mBuffersOut.emplace_back(args->geti(0), world);
mOutputs.emplace_back();
mOutputs[i].buffer = &mBuffersOut[i];
}
}
bool process(World *world)
{
Result r = mClient.process(mInputs, mOutputs);
Result r = mClient.process();///mInputs, mOutputs);
if(!r.ok())
{
@ -328,16 +314,16 @@ private:
bool exchangeBuffers(World *world)
{
mClient.template forEachParamType<BufferT,AssignBuffer>(world);
for (auto &b : mBuffersOut) b.assignToRT(world);
mParams.template forEachParamType<BufferT,AssignBuffer>(world);
// for (auto &b : mBuffersOut) b.assignToRT(world);
return true;
}
bool tidyUp(World *world)
{
for (auto &b : mBuffersIn) b.cleanUp();
for (auto &b : mBuffersOut) b.cleanUp();
// for (auto &b : mBuffersIn) b.cleanUp();
// for (auto &b : mBuffersOut) b.cleanUp()
mParams.template forEachParamType<BufferT,CleanUpBuffer>();
return true;
}
@ -351,52 +337,71 @@ private:
}
};
std::vector<SCBufferAdaptor> mBuffersIn;
std::vector<SCBufferAdaptor> mBuffersOut;
std::vector<BufferProcessSpec> mInputs;
std::vector<BufferProcessSpec> mOutputs;
void * mReplyAddr;
const char * mName;
template<size_t N,typename T>
struct CleanUpBuffer
{
void operator()(typename BufferT::type& p)
{
if(auto b = static_cast<SCBufferAdaptor*>(p.get()))
b->cleanUp();
}
};
// std::vector<SCBufferAdaptor> mBuffersIn;
// std::vector<SCBufferAdaptor> mBuffersOut;
// std::vector<BufferProcessSpec> mInputs;
// std::vector<BufferProcessSpec> mOutputs;
char * mCompletionMessage = nullptr;
void * mReplyAddr = nullptr;
const char * mName = nullptr;
};
template <typename Client, typename Wrapper> class NonRealTimeAndRealTime : public RealTime<Client,Wrapper>, public NonRealTime<Client,Wrapper>
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// An impossible monstrosty
template <typename Client, typename Wrapper, typename Params> class NonRealTimeAndRealTime : public RealTime<Client,Wrapper, Params>, public NonRealTime<Client,Wrapper, Params>
{
static void setup(InterfaceTable *ft, const char *name)
{
RealTime<Client,Wrapper>::setup(ft, name);
NonRealTime<Client,Wrapper>::setup(ft, name);
RealTime<Client,Wrapper,Params >::setup(ft, name);
NonRealTime<Client,Wrapper, Params>::setup(ft, name);
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Template Specialisations for NRT/RT
template <typename Client, typename Wrapper, typename NRT, typename RT> class FluidSCWrapperImpl;
template <typename Client, typename Wrapper, typename Params, typename NRT, typename RT> class FluidSCWrapperImpl;
template <typename Client, typename Wrapper> class FluidSCWrapperImpl<Client, Wrapper, std::true_type, std::false_type> : public NonRealTime<Client, Wrapper>
template <typename Client, typename Wrapper, typename Params> class FluidSCWrapperImpl<Client, Wrapper, Params, std::true_type, std::false_type> : public NonRealTime<Client, Wrapper, Params>
{
public:
FluidSCWrapperImpl(World* w, sc_msg_iter *args): NonRealTime<Client, Wrapper>(w,args){};
FluidSCWrapperImpl(World* w, sc_msg_iter *args): NonRealTime<Client, Wrapper, Params>(w,args){};
};
template <typename Client, typename Wrapper> class FluidSCWrapperImpl<Client, Wrapper, std::false_type, std::true_type> : public RealTime<Client, Wrapper>
template <typename Client, typename Wrapper, typename Params> class FluidSCWrapperImpl<Client, Wrapper,Params, std::false_type, std::true_type> : public RealTime<Client, Wrapper, Params>
{};
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Make base class(es), full of CRTP mixin goodness
template <typename Client>
using FluidSCWrapperBase = FluidSCWrapperImpl<Client, FluidSCWrapper<Client>, isNonRealTime<Client>, isRealTime<Client>>;
template <typename Client,typename Params>
using FluidSCWrapperBase = FluidSCWrapperImpl<Client, FluidSCWrapper<Client, Params>,Params, isNonRealTime<Client>, isRealTime<Client>>;
} // namespace impl
template <typename Client> class FluidSCWrapper : public impl::FluidSCWrapperBase<Client>
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///The main wrapper
template <typename C, typename P> class FluidSCWrapper : public impl::FluidSCWrapperBase<C,P>
{
public:
using ClientType = Client;
using Client = C;
using Params = P;
FluidSCWrapper() { impl::FluidSCWrapperBase<Client>::init(); }
FluidSCWrapper() //mParams{*getParamDescriptors()}, //impl::FluidSCWrapperBase<Client,Params>()
{ impl::FluidSCWrapperBase<Client,Params>::init(); }
FluidSCWrapper(World* w, sc_msg_iter *args): impl::FluidSCWrapperBase<Client>(w,args)
{ impl::FluidSCWrapperBase<Client>::init(); }
FluidSCWrapper(World* w, sc_msg_iter *args): impl::FluidSCWrapperBase<Client, Params>(w,args)
{ impl::FluidSCWrapperBase<Client, Params>::init(); }
static const char *getName(const char *setName = nullptr)
@ -405,38 +410,52 @@ public:
return (name = setName ? setName : name);
}
static Params *getParamDescriptors(Params *setParams = nullptr)
{
static Params* descriptors = nullptr;
return (descriptors = setParams ? setParams : descriptors);
}
static InterfaceTable *getInterfaceTable(InterfaceTable *setTable = nullptr)
{
static InterfaceTable *ft = nullptr;
return (ft = setTable ? setTable : ft);
}
static void setup(InterfaceTable *ft, const char *name)
static void setup(Params& p, InterfaceTable *ft, const char *name)
{
getName(name);
getInterfaceTable(ft);
impl::FluidSCWrapperBase<Client>::setup(ft, name);
getParamDescriptors(&p);
impl::FluidSCWrapperBase<Client, Params>::setup(ft, name);
}
auto setParams(bool verbose, World* world, impl::FloatControlsIter& inputs)
template<typename ParameterSet>
static auto& setParams(ParameterSet& p, bool verbose, World* world, impl::FloatControlsIter& inputs)
{
return impl::FluidSCWrapperBase<Client>::mClient.template setParameterValues<impl::ControlGetter>(verbose, world, inputs);
p.template setParameterValues<impl::ControlGetter>(verbose, world, inputs);
return p;
}
auto setParams(bool verbose, World* world, sc_msg_iter *args)
template<typename ParameterSet>
static auto& setParams(ParameterSet& p, bool verbose, World* world, sc_msg_iter *args)
{
return impl::FluidSCWrapperBase<Client>::mClient.template setParameterValues<impl::ArgumentGetter>(verbose,world, args);
p.template setParameterValues<impl::ArgumentGetter>(verbose,world, args);
return p;
}
// Client &client() { return mClient; }
// impl::ParameterSet<Params> mParams;
// Client &client() { return mClient; }
//
//private:
// Client mClient;
};
template <typename Client> void makeSCWrapper(InterfaceTable *ft, const char *name)
template <template <typename...> class Client,typename...Rest,typename Params>
void makeSCWrapper(const char *name, Params& params, InterfaceTable *ft)
{
FluidSCWrapper<Client>::setup(ft, name);
FluidSCWrapper<Client<ParameterSet<Params>,Rest...>, Params>::setup(params, ft, name);
}
} // namespace client

Loading…
Cancel
Save