relective merge branch 'nested-iterator-with-condition' into refactor/NRTSynths
commit
50b59a39cf
@ -1,122 +1,223 @@
|
||||
// load a source
|
||||
b = Buffer.read(s,"/Volumes/machins/projets/newsfeed/sons/textes/Audio/synth/fromtexttospeech-AmE-George.wav")
|
||||
b.play
|
||||
// load a source folder
|
||||
~loader = FluidLoadFolder("/Volumes/machins/projets/newsfeed/sons/textes/Audio/synth");
|
||||
~loader.play;
|
||||
|
||||
//slightly oversegment with novelty
|
||||
//segments should still make sense but might cut a few elements in 2 or 3
|
||||
~originalslices = Buffer(s);
|
||||
FluidBufNoveltySlice.process(s, b, indices: ~originalslices, feature: 1, kernelSize: 29, threshold: 0.05, filterSize: 5, hopSize: 128, action: {~originalslices.numFrames.postln;})
|
||||
~slicer = FluidSliceCorpus({ |src,start,num,dest| FluidBufNoveltySlice.kr(src,start,num,indices:dest, feature: 1, kernelSize: 29, threshold: 0.05, filterSize: 5, hopSize: 128)});
|
||||
~slicer.play(s, ~loader.buffer,~loader.index);
|
||||
|
||||
//test the segmentation by looping them
|
||||
(
|
||||
{
|
||||
BufRd.ar(1, b,
|
||||
Phasor.ar(0,1,
|
||||
BufRd.kr(1, ~originalslices,
|
||||
MouseX.kr(0, BufFrames.kr(~originalslices) - 1), 0, 1),
|
||||
BufRd.kr(1, ~originalslices,
|
||||
MouseX.kr(1, BufFrames.kr(~originalslices)), 0, 1),
|
||||
BufRd.kr(1,~originalslices,
|
||||
MouseX.kr(0, BufFrames.kr(~originalslices) - 1), 0, 1)), 0, 1);
|
||||
~originalindices = Array.newFrom(~slicer.index.keys).sort{|a,b| ~slicer.index[a][\bounds][0]< ~slicer.index[b][\bounds][0]}.collect{|x|~slicer.index[x][\bounds]};
|
||||
d = {arg start=0, end = 44100;
|
||||
BufRd.ar(1, ~loader.buffer, Phasor.ar(0,1,start,end,start),0,1);
|
||||
}.play;
|
||||
)
|
||||
|
||||
//analyse each segment with MFCCs in a dataset
|
||||
~originalslices.getn(0,~originalslices.numFrames, {|x|~originalslicesarray = x; if ((x.last != b.numFrames), {~originalslicesarray = ~originalslicesarray ++ (b.numFrames)}); });//retrieve the indices and add the file boundary at the end if not there already
|
||||
w = Window.new.front;
|
||||
b = ControlSpec(0, ~originalindices.size - 1, \linear, 1); // min, max, mapping, step
|
||||
c = StaticText(w, Rect(340, 20, 50, 20)).align_(\center);
|
||||
a = Slider(w, Rect(10, 20, 330, 20))
|
||||
.action_({var val = b.map(a.value).asInteger;
|
||||
c.string_(val.asString);
|
||||
d.set(\start,~originalindices[val][0], \end, ~originalindices[val][1]);
|
||||
});
|
||||
)
|
||||
|
||||
//iterates through the
|
||||
//a few buffers and our dataset - with back and forth from the language
|
||||
//analyse each segment with 20 MFCCs in a dataset and spectralshapes in another one
|
||||
(
|
||||
~mfccs = Buffer(s);
|
||||
~stats = Buffer(s);
|
||||
~flat = Buffer(s);
|
||||
~slices = FluidDataSet(s,\slices);
|
||||
|
||||
Routine{
|
||||
s.sync;
|
||||
(~originalslicesarray.size - 1).do{|i|
|
||||
FluidBufMFCC.process(s, b, startFrame: ~originalslicesarray[i], numFrames: (~originalslicesarray[i+1] - ~originalslicesarray[i]), numChans: 1,features: ~mfccs, numCoeffs: 20, action: {
|
||||
FluidBufStats.process(s, ~mfccs, startChan: 1, stats: ~stats, action: {
|
||||
FluidBufFlatten.process(s, ~stats, ~flat, action: {
|
||||
~slices.addPoint(i.asSymbol, ~flat);
|
||||
});
|
||||
});
|
||||
~featuresbuf = 4.collect{Buffer.new};
|
||||
~statsbuf = 4.collect{Buffer.new};
|
||||
~flatbuf = 4.collect{Buffer.new};
|
||||
~slicesMFCC = FluidDataSet(s,\slicesM);
|
||||
~slicesShapes = FluidDataSet(s,\slicesS);
|
||||
~extractor = FluidProcessSlices({|src,start,num,data|
|
||||
var features, stats, writer, flatten,mfccBuf, statsBuf, flatBuf, label, voice;
|
||||
label = data.key;
|
||||
voice = data.value[\voice];
|
||||
features = FluidBufMFCC.kr(src,startFrame:start,numFrames:num,numChans:1, numCoeffs: 20, features:~featuresbuf[voice],trig:1,blocking: 1);
|
||||
stats = FluidBufStats.kr(~featuresbuf[voice],stats:~statsbuf[voice],trig:Done.kr(features),blocking: 1);
|
||||
flatten = FluidBufFlatten.kr(~statsbuf[voice],~flatbuf[voice],trig:Done.kr(stats),blocking: 1);
|
||||
writer = FluidDataSetWr.kr(~slicesMFCC,label, -1, ~flatbuf[voice], Done.kr(flatten),blocking: 1);
|
||||
features = FluidBufSpectralShape.kr(src,startFrame:start,numFrames:num,numChans:1, features:~featuresbuf[voice],trig:Done.kr(writer),blocking: 1);
|
||||
stats = FluidBufStats.kr(~featuresbuf[voice],stats:~statsbuf[voice],trig:Done.kr(features),blocking: 1);
|
||||
flatten = FluidBufFlatten.kr(~statsbuf[voice],~flatbuf[voice],trig:Done.kr(stats),blocking: 1);
|
||||
writer = FluidDataSetWr.kr(~slicesShapes,label, -1, ~flatbuf[voice], Done.kr(flatten),blocking: 1);
|
||||
});
|
||||
};
|
||||
}.play;
|
||||
)
|
||||
~extractor.play(s,~loader.buffer, ~slicer.index);
|
||||
|
||||
~slices.print
|
||||
~slicesMFCC.print
|
||||
~slicesShapes.print
|
||||
|
||||
//run a window over consecutive segments, forcing them in 2 classes, and merging the consecutive segments of similar class
|
||||
//we overlap the analysis with the last (original) slice to check for continuity
|
||||
(
|
||||
~winSize = 4;//the number of consecutive items to split in 2 classes;
|
||||
~curated = FluidDataSet(s,\curatedDS);
|
||||
~query = FluidDataSetQuery(s);
|
||||
~kmeans = FluidKMeans(s,2,100);
|
||||
~stan = FluidStandardize(s);
|
||||
~kmeans = FluidKMeans(s,2,1000);
|
||||
~windowDS = FluidDataSet(s,\windowDS);
|
||||
~windowLS = FluidLabelSet(s,\windowLS);
|
||||
)
|
||||
|
||||
//curate stats (MFCCs)
|
||||
~query.clear
|
||||
~query.addRange((0*20)+1,10);
|
||||
~query.transform(~slicesMFCC,~curated);
|
||||
|
||||
//OR
|
||||
//curate stats (moments)
|
||||
~query.clear
|
||||
~query.addRange(0,3);
|
||||
~query.transform(~slicesShapes,~curated);
|
||||
|
||||
//OR
|
||||
//curate both
|
||||
~query.clear
|
||||
~query.addColumn(0);//add col 0 (mean of mfcc0 as 'loudness')
|
||||
~query.transform(~slicesMFCC,~curated);//mfcc0 as loudness
|
||||
~query.clear;
|
||||
~query.addRange(0,3);//add some spectral moments
|
||||
~query.transformJoin(~slicesShapes, ~curated, ~curated);//join in centroids
|
||||
|
||||
~stan.fitTransform(~curated, ~curated);
|
||||
|
||||
~curated.print
|
||||
~curated.dump{|x|~sliceDict = x;};
|
||||
|
||||
~originalslicesarray = (~originalindices.flatten ++ ~loader.buffer.numFrames).asSet.asArray.sort
|
||||
~orginalkeys = Array.newFrom(~slicer.index.keys).sort{|a,b| ~slicer.index[a][\bounds][0]< ~slicer.index[b][\bounds][0]}
|
||||
|
||||
//the windowed function
|
||||
(
|
||||
Routine{
|
||||
~indices = [0];
|
||||
~head = 0;
|
||||
|
||||
~sliceDict = Dictionary.new(4);
|
||||
~tempDict = Dictionary.new(4);
|
||||
|
||||
~slices.dump{|x|~sliceDict = x;};
|
||||
s.sync;
|
||||
|
||||
while ( {~head <= (~originalslicesarray.size - ~winSize)},
|
||||
{
|
||||
var step = ~winSize - 1;
|
||||
var nbass = [];
|
||||
//run a process on ~winSize items from ~head (with an overlap of 1)
|
||||
//copy the items to a subdataset
|
||||
~winSize.do{|i|
|
||||
~tempDict.put((i.asString), ~sliceDict["data"][(i+~head).asString]);//here one could curate which stats to take
|
||||
"whichslices:%\n".postf(i+~head);
|
||||
~windowedFunct = {arg head, winSize, overlap;
|
||||
var nbass = [], assignments = [], tempDict = ();
|
||||
//check the size of everything to not overrun
|
||||
winSize = (~originalslicesarray.size - head).min(winSize);
|
||||
//copy the items to a subdataset from hear
|
||||
winSize.do{|i|
|
||||
tempDict.put((i.asString), ~sliceDict["data"][(~orginalkeys[(i+head)]).asString]);//here one could curate which stats to take
|
||||
"whichslices:%\n".postf(i+head);
|
||||
};
|
||||
~windowDS.load(Dictionary.newFrom([\cols, 133, \data, ~tempDict]));
|
||||
s.sync;
|
||||
"% - loaded\n".postf(~head);
|
||||
~windowDS.load(Dictionary.newFrom([\cols, ~sliceDict["cols"].asInteger, \data, tempDict]), action: {
|
||||
"% - loaded\n".postf(head);
|
||||
|
||||
//kmeans 2 and retrieve ordered array of class assignations
|
||||
~kmeans.fitPredict(~windowDS, ~windowLS, {|x| nbass = x;});
|
||||
s.sync;
|
||||
"% - fitted1: ".postf(~head); nbass.postln;
|
||||
~kmeans.fitPredict(~windowDS, ~windowLS, action: {|x|
|
||||
nbass = x;
|
||||
"% - fitted1: ".postf(head); nbass.postln;
|
||||
|
||||
if (nbass.includes(winSize.asFloat), {
|
||||
~kmeans.fitPredict(~windowDS, ~windowLS, {|x|
|
||||
nbass = x; "% - fitted2: ".postf(head); nbass.postln;
|
||||
if (nbass.includes(winSize.asFloat), {
|
||||
~kmeans.fitPredict(~windowDS, ~windowLS, {|x|
|
||||
nbass = x; "% - fitted3: ".postf(head); nbass.postln;
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
// if (nbass.includes(0.0), { Routine{~kmeans.fitPredict(~windowDS, ~windowLS, {|x| nbass = x; "% - fitted2: ".postf(~head); nbass.postln; s.sync;});}.play; });
|
||||
~windowLS.dump{|x|
|
||||
var assignments = x.at("data").asSortedArray.flop[1].flatten;
|
||||
"% - assigned ".postf(head);
|
||||
|
||||
~windowLS.dump{|x|~assignments = x.at("data").asSortedArray.flop[1].flatten;};
|
||||
s.sync;
|
||||
"% - assigned ".postf(~head);
|
||||
assignments.postln;
|
||||
|
||||
~assignments.postln;
|
||||
(winSize-1).do{|i|
|
||||
if (assignments[i+1] != assignments[i], {
|
||||
~newindices= ~newindices ++ (~originalslicesarray[head+i+1]).asInteger;
|
||||
~newkeys = ~newkeys ++ (~orginalkeys[head+i+1]);
|
||||
});
|
||||
|
||||
step.do{|i|
|
||||
if (~assignments[i+1] != ~assignments[i], {~indices= ~indices ++ (~originalslicesarray[~head+i+1])});
|
||||
};
|
||||
|
||||
~head = ~head + step;
|
||||
//if we still have some frames to do, do them
|
||||
if (((winSize + head) < ~originalslicesarray.size), {
|
||||
"-----------------".postln;
|
||||
});
|
||||
|
||||
//leftovers
|
||||
if ( (~originalslicesarray.size - ~head) > 1, {
|
||||
//run a process on (a.size - ~head) items from ~head
|
||||
(~originalslicesarray.size - ~head - 1).do{|i|
|
||||
if (~assignments[i+1] != ~assignments[i], {~indices= ~indices ++ (~originalslicesarray[~head+i+1])});
|
||||
// (~head+i).postln;
|
||||
~windowedFunct.value(head + winSize - overlap, winSize, overlap);
|
||||
}, {~newindices = (~newindices ++ ~loader.buffer.numFrames); "done".postln;});//if we're done close the books
|
||||
};
|
||||
});
|
||||
~indices.postln;
|
||||
}.play;
|
||||
});
|
||||
}
|
||||
)
|
||||
|
||||
{var i = 8;BufRd.ar(1,b,Line.ar(~originalslicesarray[i],~originalslicesarray[i+1],(~originalslicesarray[i+1] - ~originalslicesarray[i])/b.sampleRate, doneAction: 2))}.play;
|
||||
{var i = 4;BufRd.ar(1,b,Line.ar(~indices[i],~indices[i+1],(~indices[i+1] - ~indices[i])/b.sampleRate, doneAction: 2))}.play;
|
||||
//the job
|
||||
|
||||
~newindices = [~originalslicesarray[0]]; ~newkeys = [~orginalkeys[0]];
|
||||
~windowedFunct.value(0, 4, 1);
|
||||
|
||||
//try again with more clusters
|
||||
~newindices = [~originalslicesarray[0]]; ~newkeys = [~orginalkeys[0]];
|
||||
~kmeans.numClusters = 3;
|
||||
~windowedFunct.value(0,6,2);
|
||||
|
||||
~newindices.postln;
|
||||
~newkeys.postln;
|
||||
|
||||
~newindices.size;
|
||||
~newkeys.size;
|
||||
|
||||
~newindices.last;
|
||||
~newkeys.last;
|
||||
|
||||
~slicer.index[~orginalkeys[0]]
|
||||
|
||||
//export to reaper
|
||||
(
|
||||
//first create a new file that ends with rpp - it will overwrite if the file exists
|
||||
f = File.new("/tmp/clusteredslices-" ++ Date.getDate.stamp ++".rpp","w+");
|
||||
|
||||
if (f.isOpen , {
|
||||
var path, prevpath ="", sr, count, dur;
|
||||
//write the header
|
||||
f.write("<REAPER_PROJECT 0.1 \"5.99/OSX64\" 1603037150\n\n");
|
||||
|
||||
//a first track with the originalslicearray
|
||||
//write the track header
|
||||
f.write("<TRACK\nNAME \"novelty output\"\n");
|
||||
// iterate through the items in the track
|
||||
~orginalkeys.do{|v, i|
|
||||
path = ~slicer.index[v][\path];
|
||||
if (path != prevpath, {
|
||||
sr = ~slicer.index[v][\sr];
|
||||
prevpath = path;
|
||||
count = 0;
|
||||
});
|
||||
dur = ~originalslicesarray[i+1] - ~originalslicesarray[i];
|
||||
if ( dur > 0, {
|
||||
f.write("<ITEM\nPOSITION " ++ (~originalslicesarray[i] / sr) ++ "\nLENGTH " ++ (dur / sr) ++ "\nNAME \"" ++ v ++ "\"\nSOFFS " ++ (count / sr) ++ "\n<SOURCE WAVE\nFILE \"" ++ path ++ "\"\n>\n>\n");
|
||||
});
|
||||
count = count + dur;
|
||||
};
|
||||
//write the track footer
|
||||
f.write(">\n");
|
||||
|
||||
// a second track with the new ~indices
|
||||
prevpath = "";
|
||||
//write the track header
|
||||
f.write("<TRACK\nNAME \"clustered output\"\n");
|
||||
// iterate through the items in the track
|
||||
~newkeys.do{|v, i|
|
||||
path = ~slicer.index[v][\path];
|
||||
if (path != prevpath, {
|
||||
sr = ~slicer.index[v][\sr];
|
||||
prevpath = path;
|
||||
count = 0;
|
||||
});
|
||||
dur = ~newindices[i+1] - ~newindices[i];
|
||||
if (dur > 0, {
|
||||
f.write("<ITEM\nPOSITION " ++ (~newindices[i] / sr) ++ "\nLENGTH " ++ (dur / sr) ++ "\nNAME \"" ++ v ++ "\"\nSOFFS " ++ (count / sr) ++ "\n<SOURCE WAVE\nFILE \"" ++ path ++ "\"\n>\n>\n");
|
||||
});
|
||||
count = count + dur;
|
||||
};
|
||||
//write the track footer
|
||||
f.write(">\n");
|
||||
|
||||
//write the footer
|
||||
f.write(">\n");
|
||||
f.close;
|
||||
});
|
||||
)
|
||||
@ -0,0 +1,161 @@
|
||||
// Make:
|
||||
// - A kmeans
|
||||
// - a datasetquery
|
||||
// - a normalizer
|
||||
// - a standardizer
|
||||
// - 3 DataSets of example points R-G-B descriptions
|
||||
// - 3 DataSets for the scaled versions
|
||||
// - 1 summative dataset and a LabelSet for predicted labels
|
||||
|
||||
(
|
||||
~classifier = FluidKMeans(s,5, 1000);
|
||||
~query = FluidDataSetQuery(s);
|
||||
~stan = FluidStandardize(s);
|
||||
~norm = FluidNormalize(s);
|
||||
~sourceR = FluidDataSet(s,\a3DsourceR);
|
||||
~sourceG = FluidDataSet(s,\a3DsourceG);
|
||||
~sourceB = FluidDataSet(s,\a3DsourceB);
|
||||
~scaledR = FluidDataSet(s,\a3DscaledR);
|
||||
~scaledG = FluidDataSet(s,\a3DscaledG);
|
||||
~scaledB = FluidDataSet(s,\a3DscaledB);
|
||||
~composited = FluidDataSet(s,\a3Dcomposited);
|
||||
~labels = FluidLabelSet(s,\a3Dlabels);
|
||||
)
|
||||
|
||||
//Make some random, but clustered test points, each descriptor category in a separate dataset
|
||||
(
|
||||
~sourceR.load(Dictionary.newFrom([\cols, 1, \data, (Dictionary.newFrom(40.collect{|x| [x, 1.0.sum3rand]}.flatten))]));
|
||||
~sourceG.load(Dictionary.newFrom([\cols, 1, \data, (Dictionary.newFrom(40.collect{|x| [x, 1.0.rand2]}.flatten))]));
|
||||
~sourceB.load(Dictionary.newFrom([\cols, 1, \data, (Dictionary.newFrom(40.collect{|x| [x, (0.5.sum3rand).squared + [0.75,-0.1].choose]}.flatten))]));
|
||||
)
|
||||
|
||||
//here we manipulate
|
||||
|
||||
//assemble the scaled dataset
|
||||
(
|
||||
~query.addColumn(0, {
|
||||
~query.transformJoin(~sourceB, ~sourceG, ~composited, {
|
||||
~query.transformJoin(~sourceR, ~composited, ~composited);
|
||||
});
|
||||
});
|
||||
)
|
||||
|
||||
~composited.print
|
||||
|
||||
//Fit the classifier to the example DataSet and labels, and then run prediction on the test data into our mapping label set
|
||||
~classifier.fitPredict(~composited,~labels,{~labels.dump{|x|~labeldict = x;};~composited.dump{|x|~compodict=x;};});
|
||||
|
||||
//Visualise:
|
||||
(
|
||||
w = Window("sourceClasses", Rect(128, 64, 820, 120));
|
||||
w.drawFunc = {
|
||||
Pen.use{
|
||||
~compodict["data"].keysValuesDo{|key, colour|
|
||||
Pen.fillColor = Color.fromArray((colour * 0.5 + 0.5 ).clip(0,1) ++ 1);
|
||||
Pen.fillRect( Rect( (key.asFloat * 20 + 10), (~labeldict["data"].at(key).asInteger[0] * 20 + 10),15,15));
|
||||
};
|
||||
};
|
||||
};
|
||||
w.refresh;
|
||||
w.front;
|
||||
)
|
||||
|
||||
// standardize our colours and rerun
|
||||
(
|
||||
~stan.fitTransform(~sourceR, ~scaledR, {
|
||||
~stan.fitTransform(~sourceG, ~scaledG, {
|
||||
~stan.fitTransform(~sourceB, ~scaledB, {
|
||||
//assemble
|
||||
~query.addColumn(0, {
|
||||
~query.transformJoin(~scaledB, ~scaledG, ~composited, {
|
||||
~query.transformJoin(~scaledR, ~composited, ~composited, {
|
||||
//fit
|
||||
~classifier.fitPredict(~composited,~labels,{~labels.dump{|x|~labeldict2 = x;};~composited.dump{|x|~compodict2=x;};});
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
||||
)
|
||||
|
||||
//Visualise:
|
||||
(
|
||||
w = Window("stanClasses", Rect(128, 64, 820, 120));
|
||||
w.drawFunc = {
|
||||
Pen.use{
|
||||
~compodict2["data"].keysValuesDo{|key, colour|
|
||||
Pen.fillColor = Color.fromArray((colour * 0.25 + 0.5 ).clip(0,1) ++ 1);
|
||||
Pen.fillRect( Rect( (key.asFloat * 20 + 10), (~labeldict2["data"].at(key).asInteger[0] * 20 + 10),15,15));
|
||||
};
|
||||
};
|
||||
};
|
||||
w.refresh;
|
||||
w.front;
|
||||
)
|
||||
|
||||
//now let's normalise instead
|
||||
(
|
||||
~norm.fitTransform(~sourceR, ~scaledR, {
|
||||
~norm.fitTransform(~sourceG, ~scaledG, {
|
||||
~norm.fitTransform(~sourceB, ~scaledB, {
|
||||
//assemble
|
||||
~query.addColumn(0, {
|
||||
~query.transformJoin(~scaledB, ~scaledG, ~composited, {
|
||||
~query.transformJoin(~scaledR, ~composited, ~composited, {
|
||||
//fit
|
||||
~classifier.fitPredict(~composited,~labels,{~labels.dump{|x|~labeldict2 = x;};~composited.dump{|x|~compodict2=x;};});
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
||||
)
|
||||
|
||||
//Visualise:
|
||||
(
|
||||
w = Window("normClasses", Rect(128, 64, 820, 120));
|
||||
w.drawFunc = {
|
||||
Pen.use{
|
||||
~compodict2["data"].keysValuesDo{|key, colour|
|
||||
Pen.fillColor = Color.fromArray((colour * 0.25 + 0.5 ).clip(0,1) ++ 1);
|
||||
Pen.fillRect( Rect( (key.asFloat * 20 + 10), (~labeldict2["data"].at(key).asInteger[0] * 20 + 10),15,15));
|
||||
};
|
||||
};
|
||||
};
|
||||
w.refresh;
|
||||
w.front;
|
||||
)
|
||||
|
||||
// let's mess up with the scaling of one dimension: let's multiply the range of Red by 10
|
||||
~norm.min = -10;
|
||||
~norm.max = 10;
|
||||
(
|
||||
~norm.fitTransform(~sourceR, ~scaledR, {
|
||||
//assemble
|
||||
~query.addColumn(0, {
|
||||
~query.transformJoin(~scaledB, ~scaledG, ~composited, {
|
||||
~query.transformJoin(~scaledR, ~composited, ~composited, {
|
||||
//fit
|
||||
~classifier.fitPredict(~composited,~labels,{~labels.dump{|x|~labeldict2 = x;};~composited.dump{|x|~compodict2=x;};});
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
||||
)
|
||||
|
||||
//Visualise:
|
||||
(
|
||||
w = Window("norm10rClasses", Rect(128, 64, 820, 120));
|
||||
w.drawFunc = {
|
||||
Pen.use{
|
||||
~compodict2["data"].keysValuesDo{|key, colour|
|
||||
Pen.fillColor = Color.fromArray((colour * 0.25 + 0.5 ).clip(0,1) ++ 1);
|
||||
Pen.fillRect( Rect( (key.asFloat * 20 + 10), (~labeldict2["data"].at(key).asInteger[0] * 20 + 10),15,15));
|
||||
};
|
||||
};
|
||||
};
|
||||
w.refresh;
|
||||
w.front;
|
||||
)
|
||||
Loading…
Reference in New Issue