fixed example: 'Neural Network Predicts FM Params from Audio Analysis'

nix
Ted Moore 3 years ago
parent ce962b5beb
commit 2ab8f1a509

@ -47,10 +47,7 @@ s.waitForBoot{
});
});
};
var open_mlp = {
arg path;
// nn.prGetParams.postln;
nn.read(path,{
var display_mlp_params = {
var params = nn.prGetParams;
var n_layers = params[1];
var layers_string = "";
@ -77,7 +74,6 @@ s.waitForBoot{
momentum_nb.value_(nn.momentum);
batchSize_nb.value_(nn.batchSize);*/
};
});
};
~in_bus = Bus.audio(s);
@ -256,20 +252,39 @@ s.waitForBoot{
win.view.decorator.nextLine;
Button(win,Rect(0,0,100,20))
.states_([["Save MLP"]])
.states_([["Save"]])
.action_{
Dialog.savePanel({
arg path;
nn.write(path);
nn.dump{
arg mlp_dict;
scaler_params.dump{
arg scaler_params_dict;
scaler_mfcc.dump{
arg scaler_mfcc_dict;
var dict = Dictionary.new;
dict['mlp'] = mlp_dict;
dict['scaler_params'] = scaler_params_dict;
dict['scaler_mfcc'] = scaler_mfcc_dict;
dict.writeArchive(path);
};
};
};
});
};
Button(win,Rect(0,0,100,20))
.states_([["Open MLP"]])
.states_([["Open"]])
.action_{
Dialog.openPanel({
arg path;
open_mlp.(path);
var dict = Object.readArchive(path);
nn.load(dict['mlp'].postln,{display_mlp_params.value});
scaler_params.load(dict['scaler_params'].postln);
scaler_mfcc.load(dict['scaler_mfcc'].postln);
});
};
@ -299,15 +314,6 @@ s.waitForBoot{
statsWinSl.valueAction_(0.0);
/* 100.do{
var cfreq = exprand(20,20000);
var mfreq = exprand(20,20000);
var index = rrand(0.0,20);
parambuf.setn(0,[cfreq,mfreq,index]);
0.2.wait;
add_point.value;
0.05.wait;
};*/
40.do{
var cfreq = exprand(100.0,1000.0);
var mfreq = exprand(100.0,min(cfreq,500.0));

Loading…
Cancel
Save