fixed example: 'Neural Network Predicts FM Params from Audio Analysis'

nix
Ted Moore 3 years ago
parent ce962b5beb
commit 2ab8f1a509

@ -47,37 +47,33 @@ s.waitForBoot{
}); });
}); });
}; };
var open_mlp = { var display_mlp_params = {
arg path; var params = nn.prGetParams;
// nn.prGetParams.postln; var n_layers = params[1];
nn.read(path,{ var layers_string = "";
var params = nn.prGetParams;
var n_layers = params[1];
var layers_string = "";
// params.postln;
n_layers.do({ // params.postln;
arg i;
if(i > 0,{layers_string = "% ".format(layers_string)});
layers_string = "%%".format(layers_string,params[2+i]);
});
nn.maxIter_(maxIter_nb.value); n_layers.do({
nn.learnRate_(learnRate_nb.value); arg i;
nn.momentum_(momentum_nb.value); if(i > 0,{layers_string = "% ".format(layers_string)});
nn.batchSize_(batchSize_nb.value); layers_string = "%%".format(layers_string,params[2+i]);
defer{
hidden_tf.string_(layers_string);
act_pum.value_(nn.activation);
outAct_pum.value_(nn.outputActivation);
/* maxIter_nb.value_(nn.maxIter);
learnRate_nb.value_(nn.learnRate);
momentum_nb.value_(nn.momentum);
batchSize_nb.value_(nn.batchSize);*/
};
}); });
nn.maxIter_(maxIter_nb.value);
nn.learnRate_(learnRate_nb.value);
nn.momentum_(momentum_nb.value);
nn.batchSize_(batchSize_nb.value);
defer{
hidden_tf.string_(layers_string);
act_pum.value_(nn.activation);
outAct_pum.value_(nn.outputActivation);
/* maxIter_nb.value_(nn.maxIter);
learnRate_nb.value_(nn.learnRate);
momentum_nb.value_(nn.momentum);
batchSize_nb.value_(nn.batchSize);*/
};
}; };
~in_bus = Bus.audio(s); ~in_bus = Bus.audio(s);
@ -256,20 +252,39 @@ s.waitForBoot{
win.view.decorator.nextLine; win.view.decorator.nextLine;
Button(win,Rect(0,0,100,20)) Button(win,Rect(0,0,100,20))
.states_([["Save MLP"]]) .states_([["Save"]])
.action_{ .action_{
Dialog.savePanel({ Dialog.savePanel({
arg path; arg path;
nn.write(path); nn.dump{
arg mlp_dict;
scaler_params.dump{
arg scaler_params_dict;
scaler_mfcc.dump{
arg scaler_mfcc_dict;
var dict = Dictionary.new;
dict['mlp'] = mlp_dict;
dict['scaler_params'] = scaler_params_dict;
dict['scaler_mfcc'] = scaler_mfcc_dict;
dict.writeArchive(path);
};
};
};
}); });
}; };
Button(win,Rect(0,0,100,20)) Button(win,Rect(0,0,100,20))
.states_([["Open MLP"]]) .states_([["Open"]])
.action_{ .action_{
Dialog.openPanel({ Dialog.openPanel({
arg path; arg path;
open_mlp.(path); var dict = Object.readArchive(path);
nn.load(dict['mlp'].postln,{display_mlp_params.value});
scaler_params.load(dict['scaler_params'].postln);
scaler_mfcc.load(dict['scaler_mfcc'].postln);
}); });
}; };
@ -299,15 +314,6 @@ s.waitForBoot{
statsWinSl.valueAction_(0.0); statsWinSl.valueAction_(0.0);
/* 100.do{
var cfreq = exprand(20,20000);
var mfreq = exprand(20,20000);
var index = rrand(0.0,20);
parambuf.setn(0,[cfreq,mfreq,index]);
0.2.wait;
add_point.value;
0.05.wait;
};*/
40.do{ 40.do{
var cfreq = exprand(100.0,1000.0); var cfreq = exprand(100.0,1000.0);
var mfreq = exprand(100.0,min(cfreq,500.0)); var mfreq = exprand(100.0,min(cfreq,500.0));

Loading…
Cancel
Save