You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
140 lines
3.8 KiB
Plaintext
140 lines
3.8 KiB
Plaintext
TITLE:: FluidMDS
|
|
summary:: Dimensionality Reduction with Multidimensional Scaling
|
|
categories:: Dimensionality Reduction, Data Processing
|
|
related:: Classes/FluidMDS, Classes/FluidDataSet
|
|
|
|
DESCRIPTION::
|
|
|
|
https://scikit-learn.org/stable/modules/manifold.html#multi-dimensional-scaling-mds
|
|
|
|
|
|
CLASSMETHODS::
|
|
|
|
|
|
METHOD:: new
|
|
Make a new instance
|
|
ARGUMENT:: server
|
|
The server on which to run this model
|
|
|
|
METHOD:: euclidean
|
|
Euclidean distance (default)
|
|
|
|
METHOD:: sqeuclidean
|
|
Squared Euclidean distance
|
|
|
|
METHOD:: manhattan
|
|
Manhattan distance
|
|
|
|
METHOD:: max
|
|
Minowski max
|
|
|
|
METHOD:: min
|
|
Minowski max
|
|
|
|
METHOD:: kl
|
|
Symmetric Kulback Leiber divergance (only makes sense with non-negative data)
|
|
|
|
METHOD:: cosine
|
|
Cosine distance
|
|
|
|
INSTANCEMETHODS::
|
|
|
|
PRIVATE:: init
|
|
|
|
METHOD:: fitTransform
|
|
Fit the model to a link::Classes/FluidDataSet:: and write the new projected data to a destination FluidDataSet.
|
|
ARGUMENT:: sourceDataset
|
|
Source data, or the dataset name
|
|
ARGUMENT:: destDataset
|
|
Destination data, or the dataset name
|
|
ARGUMENT:: k
|
|
The number of dimensions to reduce to
|
|
ARGUMENT:: dist
|
|
The distance metric to use (integer, 0-6, see flags above)
|
|
ARGUMENT:: action
|
|
Run when done
|
|
|
|
EXAMPLES::
|
|
|
|
code::
|
|
//Preliminaries: we want some audio, a couple of FluidDataSets, some Buffers, a FluidStandardize and a FluidMDS
|
|
(
|
|
~audiofile = File.realpath(FluidBufPitch.class.filenameSymbol).dirname +/+ "../AudioFiles/Tremblay-ASWINE-ScratchySynth-M.wav";
|
|
~raw = FluidDataSet(s,\mds_help_12D);
|
|
~reduced = FluidDataSet(s,\mds_help_2D);
|
|
~audio = Buffer.read(s,~audiofile);
|
|
~mfcc_feature = Buffer.new(s);
|
|
~stats = Buffer.new(s);
|
|
~datapoint = Buffer.alloc(s,12);
|
|
~standardizer = FluidStandardize(s);
|
|
~mds = FluidMDS(s);
|
|
)
|
|
|
|
// Do a mfcc analysis on the audio, which gives us 13 points, and we'll throw the 0th away
|
|
// Divide the time series in to 100, and take the mean of each segment and add this as a point to
|
|
// the 'raw' FluidDataSet
|
|
(
|
|
~raw.clear;
|
|
~norm.clear;
|
|
FluidBufMFCC.process(s,~audio,features:~mfcc_feature,action:{
|
|
"MFCC analysis.complete. Doing stats".postln;
|
|
fork{
|
|
var chunkLen = (~mfcc_feature.numFrames / 100).asInteger;
|
|
100.do{ |i|
|
|
s.sync; FluidBufStats.process(s,~mfcc_feature,startFrame:i*chunkLen,numFrames:chunkLen,startChan:1, stats:~stats, action:{
|
|
~stats.loadToFloatArray(action:{ |statsdata|
|
|
[statsdata[0],statsdata[1]].postln;
|
|
~datapoint.setn(0,[statsdata[0],statsdata[1]]);
|
|
s.sync;
|
|
("Adding point" ++ i).postln;
|
|
~raw.addPoint(i,~datapoint);
|
|
})
|
|
});
|
|
if(i == 99) {"Analysis done, dataset ready".postln}
|
|
}
|
|
}
|
|
});
|
|
)
|
|
|
|
//First standardize our dataset, so that the MFCC dimensions are on comensurate scales
|
|
//Then apply the MDS in-place on the standardized data to get 2 dimensions, using a Euclidean distance metric
|
|
//Download the dataset contents into an array for plotting
|
|
(
|
|
~standardizer.fit(~raw);
|
|
~standardizer.transform(~raw, ~reduced);
|
|
~mds.fitTransform(~raw,~reduced,2, FluidMDS.euclidean);
|
|
~reducedarray= Array.new(100);
|
|
fork{
|
|
100.do{|i|
|
|
~reduced.getPoint(i,~datapoint,{
|
|
|
|
~datapoint.loadToFloatArray(action:{|a| ~reducedarray.add(Array.newFrom(a))})
|
|
});
|
|
s.sync;
|
|
if(i==99){"Data downloaded".postln};
|
|
}
|
|
}
|
|
)
|
|
|
|
//Visualise the 2D projection of our original 12D data
|
|
(
|
|
d = ~reducedarray.flatten(1).unlace.deepCollect(1, { |x| x.normalize});
|
|
// d = [20.collect{1.0.rand}, 20.collect{1.0.rand}];
|
|
w = Window("scatter", Rect(128, 64, 200, 200));
|
|
w.drawFunc = {
|
|
Pen.use {
|
|
d[0].size.do{|i|
|
|
var x = (d[0][i]*200);
|
|
var y = (d[1][i]*200);
|
|
var r = Rect(x,y,5,5);
|
|
Pen.fillColor = Color.blue;
|
|
Pen.fillOval(r);
|
|
}
|
|
}
|
|
};
|
|
w.refresh;
|
|
w.front;
|
|
)
|
|
|
|
::
|