You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

180 lines
4.6 KiB
Plaintext

TITLE:: FluidMDS
summary:: Dimensionality Reduction with Multidimensional Scaling
categories:: Dimensionality Reduction, Data Processing
related:: Classes/FluidMDS, Classes/FluidDataSet
DESCRIPTION::
Multidimensional scaling of a link::Classes/FluidDataSet::
https://scikit-learn.org/stable/modules/manifold.html#multi-dimensional-scaling-mds
CLASSMETHODS::
METHOD:: new
Make a new instance
ARGUMENT:: server
The server on which to run this model
ARGUMENT:: numDimensions
The number of dimensions to reduce to
ARGUMENT:: distanceMetric
The distance metric to use (integer, 0-6, see utility constants below)
METHOD:: euclidean
Euclidean distance (default)
METHOD:: sqeuclidean
Squared Euclidean distance
METHOD:: manhattan
Manhattan distance
METHOD:: max
Minkowski max
METHOD:: min
Minkowski max
METHOD:: kl
Symmetric Kulback Leiber divergance (only makes sense with non-negative data)
METHOD:: cosine
Cosine distance
INSTANCEMETHODS::
PRIVATE:: init
METHOD:: fitTransform
Fit the model to a link::Classes/FluidDataSet:: and write the new projected data to a destination FluidDataSet.
ARGUMENT:: sourceDataSet
Source data, or the DataSet name
ARGUMENT:: destDataSet
Destination data, or the DataSet name
ARGUMENT:: action
Run when done
EXAMPLES::
code::
//Preliminaries: we want some audio, a couple of FluidDataSets, some Buffers, a FluidStandardize and a FluidMDS
(
~audiofile = File.realpath(FluidBufPitch.class.filenameSymbol).dirname +/+ "../AudioFiles/Tremblay-ASWINE-ScratchySynth-M.wav";
~raw = FluidDataSet(s,\mds_help_12D);
~standardized = FluidDataSet(s,\mds_help_12Ds);
~reduced = FluidDataSet(s,\mds_help_2D);
~audio = Buffer.read(s,~audiofile);
~mfcc_feature = Buffer.new(s);
~stats = Buffer.alloc(s, 7, 12);
~standardizer = FluidStandardize(s);
~mds = FluidMDS(s);
)
// Load audio and run an mfcc analysis, which gives us 13 points (we'll throw the 0th away)
(
~audio = Buffer.read(s,~audiofile);
FluidBufMFCC.process(s,~audio, features: ~mfcc_feature);
)
// Divide the time series in 100, and take the mean of each segment and add this as a point to
// the 'raw' FluidDataSet
(
{
var trig = LocalIn.kr(1, 1);
var buf = LocalBuf(12, 1);
var count = PulseCount.kr(trig) - 1;
var chunkLen = (~mfcc_feature.numFrames / 100).asInteger;
var stats = FluidBufStats.kr(
source: ~mfcc_feature, startFrame: count * chunkLen,
startChan:1, numFrames: chunkLen, stats: ~stats, trig: trig
);
var rd = BufRd.kr(12, ~stats, DC.kr(0), 0, 1);
var bufWr, dsWr;
12.do{|i|
bufWr = BufWr.kr(rd[i], buf, DC.kr(i));
};
dsWr = FluidDataSetWr.kr(\mds_help_12D, buf: buf, trig: Done.kr(stats));
LocalOut.kr( Done.kr(dsWr));
FreeSelf.kr(count - 99);
Poll.kr(trig,count);
}.play;
)
// wait for the post window to acknoledge the job is done.
//First standardize our DataSet, so that the MFCC dimensions are on comensurate scales
//Then apply the MDS in-place on the standardized data to get 2 dimensions, using a Euclidean distance metric
//Download the DataSet contents into an array for plotting
(
~reducedarray = Array.new(100);
~standardizer.fitTransform(~raw, ~standardized);
~mds.fitTransform(~standardized, ~reduced, action:{
~reduced.dump{|x| 100.do{|i|
~reducedarray.add(x["data"][i.asString])
}}});
)
//Visualise the 2D projection of our original 12D data
(
d = ~reducedarray.flop.deepCollect(1, { |x| x.normalize});
w = Window("scatter", Rect(128, 64, 200, 200));
w.drawFunc = {
Pen.use {
d[0].size.do{|i|
var x = (d[0][i]*200);
var y = (d[1][i]*200);
var r = Rect(x,y,5,5);
Pen.fillColor = Color.blue;
Pen.fillOval(r);
}
}
};
w.refresh;
w.front;
)
//we can change the distance computation
~mds.distanceMetric = FluidMDS.kl;
//recompute the reduction and recover the points
(
~reducedarray2 = Array.new(100);
~mds.fitTransform(~standardized, ~reduced, action:{
~reduced.dump{|x| 100.do{|i|
~reducedarray2.add(x["data"][i.asString])
}}});
)
//draw the new projection in red above the other
//Visualise the 2D projection of our original 12D data
(
d = ~reducedarray.flop.deepCollect(1, { |x| x.normalize});
e = ~reducedarray2.flop.deepCollect(1, { |x| x.normalize});
w = Window("scatter", Rect(128, 64, 200, 200));
w.drawFunc = {
Pen.use {
d[0].size.do{|i|
var x = (d[0][i]*200);
var y = (d[1][i]*200);
var r = Rect(x,y,5,5);
Pen.fillColor = Color.blue;
Pen.fillOval(r);
};
e[0].size.do{|i|
var x = (e[0][i]*200);
var y = (e[1][i]*200);
var r = Rect(x,y,5,5);
Pen.fillColor = Color.red;
Pen.fillOval(r);
}
}
};
w.refresh;
w.front;
)
::