You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

291 lines
9.7 KiB
Plaintext

TITLE:: FluidMFCC
SUMMARY:: Mel-Frequency Cepstral Coefficients as Spectral Descriptors in Real-Time
CATEGORIES:: Libraries>FluidDecomposition
RELATED:: Guides/FluCoMa, Guides/FluidDecomposition, Classes/FluidMelBands
DESCRIPTION::
This class implements a classic spectral descriptor, the Mel-Frequency Cepstral Coefficients (https://en.wikipedia.org/wiki/Mel-frequency_cepstrum). The input is first filtered in to STRONG::numBands:: perceptually-spaced bands, as in LINK::Classes/FluidMelBands::. It is then analysed into STRONG::numCoeffs:: number of cepstral coefficients. It has the avantage of being amplitude invarient, except for the first coefficient. It is part of the LINK:: Guides/FluidDecomposition:: of LINK:: Guides/FluCoMa::. For more explanations, learning material, and discussions on its musicianly uses, visit http://www.flucoma.org/
The process will return a multichannel control steam of STRONG::maxNumCoeffs::, which will be repeated if no change happens within the algorythm, i.e. when the hopSize is larger than the server's kr period.
CLASSMETHODS::
METHOD:: kr
The audio rate in, control rate out version of the object.
ARGUMENT:: in
The audio to be processed.
ARGUMENT:: numCoeffs
The number of cepstral coefficients to be outputed. It is limited by the maxNumCoeffs parameter. When the number is smaller than the maximum, the output is zero-padded.
ARGUMENT:: numBands
The number of bands that will be perceptually equally distributed between minFreq and maxFreq to describe the spectral shape before it is converted to cepstral coefficients.
ARGUMENT:: minFreq
The lower boundary of the lowest band of the model, in Hz.
ARGUMENT:: maxFreq
The highest boundary of the highest band of the model, in Hz.
ARGUMENT:: maxNumCoeffs
The maximum number of cepstral coefficients that can be computed. This sets the number of channels of the output, and therefore cannot be modulated.
ARGUMENT:: windowSize
The window size. As MFCC computation relies on spectral frames, we need to decide what precision we give it spectrally and temporally, in line with Gabor Uncertainty principles. http://www.subsurfwiki.org/wiki/Gabor_uncertainty
ARGUMENT:: hopSize
The window hop size. As MFCC computation relies on spectral frames, we need to move the window forward. It can be any size but low overlap will create audible artefacts. The -1 default value will default to half of windowSize (overlap of 2).
ARGUMENT:: fftSize
The inner FFT/IFFT size. It should be at least 4 samples long, at least the size of the window, and a power of 2. Making it larger allows an oversampling of the spectral precision. The -1 default value will use the next power of 2 equal or above the windowSize.
ARGUMENT:: maxFFTSize
How large can the FFT be, by allocating memory at instantiation time. This cannot be modulated.
RETURNS::
A KR signal of STRONG::maxNumCoeffs:: channels. The latency is windowSize.
EXAMPLES::
code::
//create a monitoring window for the values
(
b = Bus.new(\control,0,13);
w = Window("MFCCs Monitor", Rect(10, 10, 420, 320)).front;
a = MultiSliderView(w,Rect(10, 10, 400, 300)).elasticMode_(1).isFilled_(1);
a.reference_(Array.fill(13,{0.5})); //make a center line to show 0
)
//run the window updating routine.
(
~winRange = 20;
r = Routine {
{
b.get({ arg val;
{
if(w.isClosed.not) {
//val.postln;
a.value = val.linlin(~winRange.neg,~winRange,0,1);
}
}.defer
});
0.01.wait;
}.loop
}.play
)
//play a simple sound to observe the values
(
x = {arg type = 0;
var source = Select.ar(type,[SinOsc.ar(220),Saw.ar(220),Pulse.ar(220)]) * LFTri.kr(0.1).exprange(0.01,0.1);
Out.kr(b,FluidMFCC.kr(source,maxNumCoeffs:13));
source.dup;
}.play;
)
// change the wave types, observe the amplitude invariance of the descriptors, apart from the leftmost coefficient
x.set(\type, 1)
~winRange = 40; //adjust the range above and below 0 to zoom in or out on the MFCC
x.set(\type, 2)
x.set(\type, 0)
// free this source
x.free
// load a more exciting one
c = Buffer.read(s,File.realpath(FluidMFCC.class.filenameSymbol).dirname.withTrailingSlash ++ "../AudioFiles/Tremblay-AaS-SynthTwoVoices-M.wav");
// analyse with parameters to be changed
(
x = {arg bands = 40, low = 20, high = 20000;
var source = PlayBuf.ar(1,c,loop:1);
Out.kr(b,FluidMFCC.kr(source, 13, bands, low, high, 13) / 10);
source.dup;
}.play;
)
~winRange = 10; //adjust the range above and below 0 to zoom in or out on the MFCC
// observe the number of bands. The unused ones at the top are not updated
x.set(\bands,20)
// back to the full range
x.set(\bands,40)
// focus all the bands on a mid range
x.set(\low,320, \high, 800)
// focusing on the low end shows the fft resolution issue. One could restart the analysis with a larger fft to show more precision
x.set(\low,20, \high, 160)
// back to full range
x.set(\low,20, \high, 20000)
// free everything
x.free;b.free;c.free;r.stop;
::
STRONG::A musical example::
CODE::
//program that freezes mfcc spectra, then looks for matches between two frozen spectra
(
SynthDef("MFCCJamz", {arg freq=220, source = 0, buffer, mfccBus, distBus, t_freeze0=0, t_freeze1=0, onsetsOn0=0, onsetsOn1=0, restart = 1;
var sound, mfcc, mfccFreeze0, mfccFreeze1, dist0, dist1, closest, slice;
sound = SelectX.ar(source, [
SinOsc.ar(freq, 0, 0.1),
LFTri.ar(freq, 0, 0.1),
LFSaw.ar(freq, 0, 0.1),
Pulse.ar(freq, 0.5, 0.1),
WhiteNoise.ar(0.1),
PinkNoise.ar(0.1),
PlayBuf.ar(1, buffer, 1, loop:1, trigger:restart)
]);
slice = FluidOnsetSlice.ar(sound); //onset detection for mfcc freeze on onset
mfcc = FluidMFCC.kr(sound,maxNumCoeffs:13);
mfccFreeze0 = Latch.kr(mfcc, t_freeze0+(slice*onsetsOn0));
mfccFreeze1 = Latch.kr(mfcc, t_freeze1+(slice*onsetsOn1));
Out.kr(mfccBus,mfcc.addAll(mfccFreeze0).addAll(mfccFreeze1));
//distance calculations
dist0 = Mix((mfcc.copyRange(1,12) - mfccFreeze0.copyRange(1,12)).squared).sqrt;
dist1 = Mix((mfcc.copyRange(1,12) - mfccFreeze1.copyRange(1,12)).squared).sqrt;
Out.kr(distBus, [dist0, dist1]);
//sends a trigger when the item with a closer euclidean distance changes
SendTrig.kr(Trig1.kr(dist1-dist0, 0.001)+Trig1.kr(dist0-dist1, 0.001), 0, dist1<dist0);
Out.ar(0, sound);
}).load(s);
)
(
var buffers, buffer, paths, mfccBus, freezeBus, distBus, win, sliders, updateRout, winRange, currentMFCC, synth, movingGUI, trainButtons, playbackButton, oscFunc, closestBus;
winRange = 100;
win = Window("MFCCs Monitor", Rect(10, 10, 450, 320)).front;
sliders = List.newClear(0);
3.do{|i|
sliders.add(MultiSliderView().maxWidth_(150).maxHeight_(150)
.elasticMode_(1).isFilled_(1)
.reference_(Array.fill(13,{0.5})); //make a center line to show 0
);
};
//look in the directory for all .wav files
paths = PathName(File.realpath(FluidMFCC.class.filenameSymbol)
.dirname.withTrailingSlash ++ "../AudioFiles/")
.files.select({arg item; item.fullPath.contains(".wav")})
.collect({arg item; item.fullPath});
s.waitForBoot({
Routine({
buffers = List.newClear(0);
paths.do{arg item;buffers.add(Buffer.read(s, item.postln));};
2.wait;
s.sync;
mfccBus = Bus.control(s, 39);
distBus = Bus.control(s, 2);
closestBus = Bus.control(s);
synth = Synth("MFCCJamz", [\buffer, buffers[0], \mfccBus, mfccBus, \distBus, distBus, \closestBus, closestBus]);
//the slider and PopUps under the main mfcc display
movingGUI = [
Slider().orientation_(\horizontal).action_{|sl| winRange = sl.value.linlin(0,1,50,500)},
Slider().orientation_(\horizontal).action_{|sl| synth.set(\freq, sl.value.linexp(0,1,220,660))},
PopUpMenu().items_(["sine", "tri", "saw", "square", "white", "pink", "buf"])
.action_{|menu| synth.set(\source, menu.value)}
.maxWidth_(150),
PopUpMenu().items_(paths)
.action_{|menu| synth.set(\buffer, buffers[menu.value])}
.maxWidth_(150)
];
//the buttons under the two frozen mfcc displays
trainButtons = List.newClear(0);
2.do{arg i;
i.postln;
trainButtons.add(Button().states_([["train", Color.black, Color.green]])
.action_{arg butt;
//freezeBus.setn(currentMFCC);
synth.set(("t_freeze"++i).asSymbol,1);
};
);
trainButtons.add(Button().states_([["trainOnset", Color.black, Color.red],["trainOnset", Color.black, Color.green]])
.action_{arg butt;
synth.set(("onsetsOn"++i).asSymbol,butt.value);
};
);
trainButtons.add(Button().states_([["", Color.black, Color.black],["", Color.black, Color.blue]]));
trainButtons.add(StaticText());
};
playbackButton = Button().states_([["restart", Color.black, Color.green]])
.mouseDownAction_({arg butt;
synth.set(\restart, 0.5);
})
.action_{arg butt;
synth.set(\restart, -0.5);
};
win.layout_(HLayout(
VLayout(sliders[0], movingGUI[0], movingGUI[1], movingGUI[2]),
VLayout(sliders[1],HLayout(trainButtons[0],trainButtons[1]), HLayout(trainButtons[2],trainButtons[3]), movingGUI[3]),
VLayout(sliders[2],HLayout(trainButtons[4],trainButtons[5]), HLayout(trainButtons[6],trainButtons[7]), playbackButton)
));
win.front;
win.onClose_{synth.free; oscFunc.free; updateRout.stop};
//receives a trigger when the nearest element changes
oscFunc = OSCFunc({ arg msg, time;
{
trainButtons[2].value_(1-msg[3]);
trainButtons[6].value_(msg[3]);
}.defer
},'/tr', s.addr);
//update the window
updateRout = Routine {
{arg i;
mfccBus.get({ arg val;
{
currentMFCC = val;
sliders[0].value = val.copyRange(0,12).linlin(winRange.neg,winRange,0,1);
sliders[1].value = val.copyRange(13,25).linlin(winRange.neg,winRange,0,1);
sliders[2].value = val.copyRange(26,38).linlin(winRange.neg,winRange,0,1);
}.defer
});
distBus.get({ arg val;
{
trainButtons[3].string = val[0].round(0.001).asString;
trainButtons[7].string = val[1].round(0.001).asString;
}.defer
});
0.05.wait;
}.loop
}.play;
}).play(AppClock);
})
)
::