You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

132 lines
3.1 KiB
Plaintext

TITLE:: FluidKNNRegressor
summary:: Regression with K Nearest Neighbours
categories:: Regression
related:: Classes/FluidKNNClassifier, Classes/FluidDataSet
DESCRIPTION::
A nearest-neighbour regressor. A continuous value is predicted for each point as the (weighted) average value of its nearest neighbours.
https://scikit-learn.org/stable/modules/neighbors.html#regression
CLASSMETHODS::
METHOD:: new
Create a new KNN regressor on the server
ARGUMENT:: server
The server to run this model on.
ARGUMENT:: numNeighbours
number of neigbours to consider in mapping, min 1
ARGUMENT:: weight
Whether to weight neighbours by distance when producing new point
INSTANCEMETHODS::
METHOD:: fit
Map a source link::Classes/FluidDataSet:: to a one-dimensional target; both DataSets need to have the same number of points.
ARGUMENT:: sourceDataSet
Source data
ARGUMENT:: targetDataSet
Target data
ARGUMENT:: action
Run when done
METHOD:: predict
Apply learned mapping to a link::Classes/FluidDataSet:: and write to an output DataSet
ARGUMENT:: sourceDataSet
data to regress
ARGUMENT:: targetDataSet
output data
ARGUMENT:: action
Run when done
METHOD:: predictPoint
Apply learned mapping to a data point in a link::Classes/Buffer::
ARGUMENT:: buffer
data point
ARGUMENT:: action
Run when done
EXAMPLES::
code::
//Make a simple mapping between a ramp and a sine cycle, test with an exponentional ramp
(
~source = FluidDataSet(s);
~target = FluidDataSet(s);
~test = FluidDataSet(s);
~output = FluidDataSet(s);
~tmpbuf = Buffer.alloc(s,1);
~regressor = FluidKNNRegressor(s);
)
//Make source, target and test data
(
~sourcedata = 128.collect{|i|i/128};
~targetdata = 128.collect{|i| sin(2*pi*i/128) };
~testdata = 128.collect{|i|(i/128)**2};
~source.load(
Dictionary.with(
*[\cols -> 1,\data -> Dictionary.newFrom(
~sourcedata.collect{|x, i| [i.asString, [x]]}.flatten)])
);
~target.load(
d = Dictionary.with(
*[\cols -> 1,\data -> Dictionary.newFrom(
~targetdata.collect{|x, i| [i.asString, [x]]}.flatten)]);
);
~test.load(
Dictionary.with(
*[\cols -> 1,\data -> Dictionary.newFrom(
~testdata.collect{|x, i| [i.asString, [x]]}.flatten)])
);
~targetdata.plot;
~source.print;
~target.print;
~test.print;
)
// Now make a regressor and fit it to the source and target, and predict against test
//grab the output data whilst we're at it, so we can inspect
(
~outputdata = Array(128);
~regressor.fit(~source, ~target);
~regressor.predict(~test, ~output, 1, action:{
~output.dump{|x| 128.do{|i|
~outputdata.add(x["data"][i.asString][0])
}};
});
)
//We should see a single cycle of a chirp
~outputdata.plot;
// single point transform on arbitrary value
~inbuf = Buffer.loadCollection(s,[0.5]);
~regressor.predictPoint(~inbuf,{|x|x.postln;});
::
subsection:: Server Side Queries
code::
//we are here querying with a saw in control rate, all on the server, via a buffer interface
(
{
var input = Saw.kr(2).linlin(-1,1,0,1);
var trig = Impulse.kr(ControlRate.ir/10);
var inputPoint = LocalBuf(1);
var outputPoint = LocalBuf(1);
BufWr.kr(input,inputPoint,0);
~regressor.kr(trig,inputPoint,outputPoint);
BufRd.kr(1,outputPoint,0);
}.scope
)
::