|
|
|
|
|
// A tool from the FluCoMa project, funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 725899)
|
|
|
|
|
|
#include "SC_PlugIn.hpp"
|
|
|
#include "data/FluidTensor.hpp"
|
|
|
#include "clients/rt/TransientSlice.hpp"
|
|
|
|
|
|
static InterfaceTable *ft;
|
|
|
namespace fluid {
|
|
|
namespace segmentation{
|
|
|
class FluidSliceTransients: public SCUnit
|
|
|
{
|
|
|
using audio_client = TransientsSlice<double, float>;
|
|
|
using AudioSignalWrapper = audio_client::AudioSignal;
|
|
|
using SignalWrapper = audio_client::Signal<float>;
|
|
|
|
|
|
// using SignalPointer = std::unique_ptr<signal_wrapper>;
|
|
|
public:
|
|
|
FluidSliceTransients()
|
|
|
{
|
|
|
m_client = new audio_client(65536);
|
|
|
setParams(true);
|
|
|
bool isOK;
|
|
|
std::string feedback;
|
|
|
|
|
|
std::tie(isOK, feedback) = m_client->sanityCheck();
|
|
|
if(!isOK)
|
|
|
{
|
|
|
Print("FluidSliceTransients Error: %s",feedback.c_str());
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
|
|
|
m_client->set_host_buffer_size(bufferSize());
|
|
|
m_client->reset();
|
|
|
|
|
|
//Work out what signals we need. For now keep it simple:
|
|
|
//in 0 => only audio
|
|
|
//out 0 => only audio
|
|
|
input_signals[0] = new AudioSignalWrapper();
|
|
|
output_signals[0] = new AudioSignalWrapper();
|
|
|
|
|
|
mCalcFunc = make_calc_function<FluidSliceTransients,&FluidSliceTransients::next>();
|
|
|
Unit* unit = this;
|
|
|
ClearUnitOutputs(unit,1);
|
|
|
}
|
|
|
|
|
|
~FluidSliceTransients()
|
|
|
{
|
|
|
delete input_signals[0];
|
|
|
delete output_signals[0];
|
|
|
delete m_client;
|
|
|
}
|
|
|
|
|
|
private:
|
|
|
|
|
|
void setParams(bool instantiation)
|
|
|
{
|
|
|
assert(m_client);
|
|
|
for(size_t i = 0; i < m_client->getParams().size(); ++i)
|
|
|
{
|
|
|
parameter::Instance& p = m_client->getParams()[i];
|
|
|
|
|
|
if(!instantiation && p.getDescriptor().instantiation())
|
|
|
continue;
|
|
|
|
|
|
switch(p.getDescriptor().getType())
|
|
|
{
|
|
|
case parameter::Type::Long:
|
|
|
p.setLong(in0(i+1));
|
|
|
p.checkRange();
|
|
|
break;
|
|
|
case parameter::Type::Float:
|
|
|
p.setFloat(in0(i+1));
|
|
|
p.checkRange();
|
|
|
break;
|
|
|
case parameter::Type::Buffer:
|
|
|
// p.setBuffer( in0(i+1));
|
|
|
break;
|
|
|
default:
|
|
|
break;
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
|
|
|
void next(int numsamples)
|
|
|
{
|
|
|
setParams(false);
|
|
|
const float* input = in(0);
|
|
|
const float inscalar = in0(0);
|
|
|
input_signals[0]->set(const_cast<float*>(input), inscalar);
|
|
|
output_signals[0]->set(out(0), out0(0));
|
|
|
m_client->do_process(std::begin(input_signals),std::end(input_signals),std::begin(output_signals), std::end(output_signals),numsamples,1,1);
|
|
|
}
|
|
|
|
|
|
audio_client* m_client;
|
|
|
SignalWrapper* input_signals[1];
|
|
|
SignalWrapper* output_signals[1];
|
|
|
};
|
|
|
}
|
|
|
}
|
|
|
|
|
|
PluginLoad(FluidSTFTUGen) {
|
|
|
ft = inTable;
|
|
|
registerUnit<fluid::segmentation::FluidSliceTransients>(ft, "FluidTransientSlice");
|
|
|
}
|