|
|
TITLE:: FluidBufPitch
|
|
|
SUMMARY:: A Selection of Pitch Descriptors on a Buffer
|
|
|
CATEGORIES:: Libraries>FluidDecomposition
|
|
|
RELATED:: Guides/FluCoMa, Guides/FluidDecomposition, Classes/SpecCentroid, Classes/SpecFlatness, Classes/SpecCentroid, Classes/SpecPcile
|
|
|
|
|
|
|
|
|
DESCRIPTION::
|
|
|
This class implements three popular pitch descriptors, computed as frequency and the confidence in its value. It is part of the Fluid Decomposition Toolkit of the FluCoMa project.FOOTNOTE:: This was made possible thanks to the FluCoMa project ( http://www.flucoma.org/ ) funded by the European Research Council ( https://erc.europa.eu/ ) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 725899).::
|
|
|
|
|
|
The process will return a multichannel buffer with two channels per input channel, one for pitch and one for the pitch tracking confidence. Each sample represents a value, which is every hopSize.
|
|
|
|
|
|
CLASSMETHODS::
|
|
|
|
|
|
METHOD:: process
|
|
|
This is the method that calls for the pitch descriptor to be calculated on a given source buffer.
|
|
|
|
|
|
ARGUMENT:: server
|
|
|
The server on which the buffers to be processed are allocated.
|
|
|
|
|
|
ARGUMENT:: source
|
|
|
The index of the buffer to use as the source material to be pitch-tracked. The different channels of multichannel buffers will be processing sequentially.
|
|
|
|
|
|
ARGUMENT:: startFrame
|
|
|
Where in the srcBuf should the process start, in sample.
|
|
|
|
|
|
ARGUMENT:: numFrames
|
|
|
How many frames should be processed.
|
|
|
|
|
|
ARGUMENT:: startChan
|
|
|
For multichannel srcBuf, which channel should be processed first.
|
|
|
|
|
|
ARGUMENT:: numChans
|
|
|
For multichannel srcBuf, how many channel should be processed.
|
|
|
|
|
|
ARGUMENT:: features
|
|
|
The destination buffer for the pitch descriptor.
|
|
|
|
|
|
ARGUMENT:: algorithm
|
|
|
The algorithm to estimate the pitch. The options are:
|
|
|
TABLE::
|
|
|
## 0 || Cepstrum: TODO.
|
|
|
## 1 || Harmonic Product Spectrum: TODO.
|
|
|
## 2 || YinFFT: TODO.
|
|
|
::
|
|
|
|
|
|
ARGUMENT:: winSize
|
|
|
The window size. As sinusoidal estimation relies on spectral frames, we need to decide what precision we give it spectrally and temporally, in line with Gabor Uncertainty principles. http://www.subsurfwiki.org/wiki/Gabor_uncertainty
|
|
|
|
|
|
ARGUMENT:: hopSize
|
|
|
The window hope size. As sinusoidal estimation relies on spectral frames, we need to move the window forward. It can be any size but low overlap will create audible artefacts.
|
|
|
|
|
|
ARGUMENT:: fftSize
|
|
|
The inner FFT/IFFT size. It should be at least 4 samples long, at least the size of the window, and a power of 2. Making it larger allows an oversampling of the spectral precision.
|
|
|
|
|
|
ARGUMENT:: action
|
|
|
A Function to be evaluated once the offline process has finished and all Buffer's instance variables have been updated on the client side. The function will be passed [features] as an argument.
|
|
|
|
|
|
RETURNS::
|
|
|
Nothing, as the destination buffer is declared in the function call.
|
|
|
|
|
|
EXAMPLES::
|
|
|
|
|
|
code::
|
|
|
// create some buffers
|
|
|
(
|
|
|
b = Buffer.read(s,File.realpath(FluidBufPitch.class.filenameSymbol).dirname.withTrailingSlash ++ "../AudioFiles/Tremblay-ASWINE-ScratchySynth-M.wav");
|
|
|
c = Buffer.new(s);
|
|
|
)
|
|
|
|
|
|
// run the process with basic parameters
|
|
|
(
|
|
|
Routine{
|
|
|
t = Main.elapsedTime;
|
|
|
FluidBufPitch.process(s, b, features: c);
|
|
|
(Main.elapsedTime - t).postln;
|
|
|
}.play
|
|
|
)
|
|
|
|
|
|
// listen to the source and look at the buffer
|
|
|
b.play;
|
|
|
c.plot(minval:0, maxval:20000)
|
|
|
// plot with a different range to appreciate the confidence:
|
|
|
c.plot(minval:0, maxval:1)
|
|
|
// interleaved [pitch,confidence] values in the buffer
|
|
|
c.getn(0,100,{|x|x.postln})
|
|
|
::
|
|
|
|
|
|
STRONG::A stereo buffer example.::
|
|
|
CODE::
|
|
|
|
|
|
// load two very different files
|
|
|
(
|
|
|
b = Buffer.read(s,File.realpath(FluidBufPitch.class.filenameSymbol).dirname.withTrailingSlash ++ "../AudioFiles/Tremblay-SA-UprightPianoPedalWide.wav");
|
|
|
c = Buffer.read(s,File.realpath(FluidBufPitch.class.filenameSymbol).dirname.withTrailingSlash ++ "../AudioFiles/Tremblay-AaS-AcousticStrums-M.wav");
|
|
|
)
|
|
|
|
|
|
// composite one on left one on right as test signals
|
|
|
FluidBufCompose.process(s, c, numFrames:b.numFrames, startFrame:555000,destStartChan:1, destination:b)
|
|
|
b.play
|
|
|
|
|
|
// create a buffer as destinations
|
|
|
c = Buffer.new(s);
|
|
|
|
|
|
//run the process on them
|
|
|
(
|
|
|
Routine{
|
|
|
t = Main.elapsedTime;
|
|
|
FluidBufPitch.process(s, b, features: c);
|
|
|
(Main.elapsedTime - t).postln;
|
|
|
}.play
|
|
|
)
|
|
|
|
|
|
// look at the buffer: [pitch,confidence] for left then [pitch,confidence] for right
|
|
|
c.plot(minval:0, maxval:1500)
|
|
|
:: |