You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

162 lines
6.7 KiB
Plaintext

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

TITLE:: FluidBufAmpSlice
SUMMARY:: Amplitude-based Detrending Slicer for Buffers
CATEGORIES:: Libraries>FluidDecomposition
RELATED:: Guides/FluCoMa, Guides/FluidDecomposition, Guides/FluidBufMultiThreading
DESCRIPTION::
This class implements an amplitude-based slicer,with various customisable options and conditions to detect relative amplitude changes as onsets. It is part of the LINK:: Guides/FluidDecomposition:: of LINK:: Guides/FluCoMa::. For more explanations, learning material, and discussions on its musicianly uses, visit http://www.flucoma.org/
FluidBufAmpSlice is based on two envelop followers on a highpassed version of the signal: one slow that gives the trend, and one fast. Each have features that will interact. The example code below is unfolding the various possibilites in order of complexity.
The process will return a buffer which contains indices (in sample) of estimated starting points of different slices.
STRONG::Threading::
By default, this UGen spawns a new thread to avoid blocking the server command queue, so it is free to go about with its business. For a more detailed discussion of the available threading and monitoring options, including the two undocumented Class Methods below (.processBlocking and .kr) please read the guide LINK::Guides/FluidBufMultiThreading::.
CLASSMETHODS::
METHOD:: process, processBlocking
This is the method that calls for the slicing to be calculated on a given source buffer.
ARGUMENT:: server
The server on which the buffers to be processed are allocated.
ARGUMENT:: source
The index of the buffer to use as the source material to be sliced through novelty identification. The different channels of multichannel buffers will be summed.
ARGUMENT:: startFrame
Where in the srcBuf should the slicing process start, in sample.
ARGUMENT:: numFrames
How many frames should be processed.
ARGUMENT:: startChan
For multichannel sources, which channel should be processed.
ARGUMENT:: numChans
For multichannel sources, how many channel should be summed.
ARGUMENT:: indices
The index of the buffer where the indices (in sample) of the estimated starting points of slices will be written. The first and last points are always the boundary points of the analysis.
ARGUMENT:: fastRampUp
The number of samples the fast envelope follower will take to reach the next value when raising. Typically, this will be faster than slowRampUp.
ARGUMENT:: fastRampDown
The number of samples the fast envelope follower will take to reach the next value when falling. Typically, this will be faster than slowRampDown.
ARGUMENT:: slowRampUp
The number of samples the absolute envelope follower will take to reach the next value when raising.
ARGUMENT:: slowRampDown
The number of samples the absolute envelope follower will take to reach the next value when falling.
ARGUMENT:: onThreshold
The threshold in dB of the relative envelope follower to trigger an onset, aka to go ON when in OFF state. It is computed on the difference between the two envelope followers.
ARGUMENT:: offThreshold
The threshold in dB of the relative envelope follower to reset, aka to allow the differential envelop to trigger again.
ARGUMENT:: floor
The level in dB the slowRamp needs to be above to consider a detected difference valid, allowing to ignore the slices in the noise floor.
ARGUMENT:: minSliceLength
The length in samples that the Slice will stay ON. Changes of states during that period will be ignored.
ARGUMENT:: highPassFreq
The frequency of the fourth-order LinkwitzRiley high-pass filter (https://en.wikipedia.org/wiki/Linkwitz%E2%80%93Riley_filter). This is done first on the signal to minimise low frequency intermodulation with very fast ramp lengths. A frequency of 0 bypasses the filter.
ARGUMENT:: freeWhenDone
Free the server instance when processing complete. Default true
ARGUMENT:: action
A Function to be evaluated once the offline process has finished and indices instance variables have been updated on the client side. The metric will be passed indices as an argument.
returns:: an instance of the processor
EXAMPLES::
code::
// detrending explained
// define a test signal and a destination buffer
(
b = Buffer.sendCollection(s, Array.fill(44100,{|i| sin(i*pi/ (44100/640)) * ((((79000-i) % 22050).abs / 28000.0) + 0.2)}));
c = Buffer.new(s);
)
// the source is a sinewave that does not go to silence and has sharp-ish amplitude bumps as onsets we try to track
b.play
b.plot
//process with symmetrical thresholds
FluidBufAmpSlice.process(s, b,indices: c,fastRampUp: 5,fastRampDown: 50,slowRampUp: 220,slowRampDown: 220, onThreshold: 10, offThreshold: 10,floor: -60);
c.query
c.getn(0,c.numFrames,{|item|item.postln;})
//beware of multiple triggers at the begining of the 2nd cycle above). A solution: Schmidth triggers
FluidBufAmpSlice.process(s, b,indices: c,fastRampUp: 5,fastRampDown: 50,slowRampUp: 220,slowRampDown: 220, onThreshold: 10, offThreshold: 7,floor: -60);
c.query
c.getn(0,c.numFrames,{|item|item.postln;})
// we got most of them sorted, but there is another solution: minslicelength
FluidBufAmpSlice.process(s, b,indices: c,fastRampUp: 5,fastRampDown: 50,slowRampUp: 220,slowRampDown: 220, onThreshold: 10, offThreshold: 7,floor: -60, minSliceLength: 500);
c.query
c.getn(0,c.numFrames,{|item|item.postln;})
::
STRONG::A musical example.::
CODE::
//load a buffer
(
b = Buffer.read(s,File.realpath(FluidBufAmpSlice.class.filenameSymbol).dirname.withTrailingSlash ++ "../AudioFiles/Nicol-LoopE-M.wav");
c = Buffer.new(s);
)
// slice the samples
FluidBufAmpSlice.process(s,b,indices:c,fastRampUp: 10,fastRampDown: 2205,slowRampUp: 4410,slowRampDown: 4410,onThreshold: 10,offThreshold: 5,floor: -40,minSliceLength: 4410,highPassFreq: 20);
c.query
c.getn(0,c.numFrames,{|item|item.postln;})
//loops over a splice with the MouseX
(
{
BufRd.ar(1, b,
Phasor.ar(0,1,
BufRd.kr(1, c,
MouseX.kr(0, BufFrames.kr(c) - 1), 0, 1),
BufRd.kr(1, c,
MouseX.kr(1, BufFrames.kr(c)), 0, 1),
BufRd.kr(1,c,
MouseX.kr(0, BufFrames.kr(c) - 1), 0, 1)), 0, 1);
}.play;
)
::
STRONG::A stereo buffer example.::
CODE::
// make a stereo buffer
b = Buffer.alloc(s,88200,2);
// add some stereo clicks and listen to them
((0..3)*22050+11025).do({|item,index| b.set(item+(index%2), 1.0)})
b.play
// create a new buffer as destinations
c = Buffer.new(s);
//run the process on them
(
// with basic params
Routine{
var t = Main.elapsedTime;
var proc = FluidBufAmpSlice.process(s,b, indices: c, fastRampUp: 10,fastRampDown: 2205,slowRampUp: 4410,slowRampDown: 4410, onThreshold: 10,offThreshold: 5);
proc.wait;
c.query;
(Main.elapsedTime - t).postln;
}.play
)
// list the indicies of detected attacks - the two input channels have been summed.
c.getn(0,c.numFrames,{|item|(item * 2).postln;})
::