TITLE:: FluidPCA summary:: Dimensionality Reduction with Principal Component Analysis categories:: Dimensionality Reduction, Data Processing related:: Classes/FluidMDS, Classes/FluidDataSet DESCRIPTION:: Principal Components Analysis of a link::Classes/FluidDataSet:: https://scikit-learn.org/stable/modules/decomposition.html#principal-component-analysis-pca CLASSMETHODS:: METHOD:: new Make a new instance ARGUMENT:: server The server on which to run this model ARGUMENT:: numDimensions The number of dimensions to reduce to INSTANCEMETHODS:: PRIVATE:: init METHOD:: fit Train this model on a link::Classes/FluidDataSet:: but don't transform the data ARGUMENT:: dataSet A link::Classes/FluidDataSet:: to analyse ARGUMENT:: action Run when done METHOD:: transform Given a trained model, apply the reduction to a source link::Classes/FluidDataSet:: and write to a destination. Can be the same for both (in-place) ARGUMENT:: sourceDataSet Source data, or the DataSet name ARGUMENT:: destDataSet Destination data, or the DataSet name ARGUMENT:: action Run when done. The variance is passed as an argument, aka the fidelity of the new representation: a value near 1.0 means a higher fidelity to the original. METHOD:: fitTransform link::Classes/FluidPCA#fit:: and link::Classes/FluidPCA#transform:: in a single pass ARGUMENT:: sourceDataSet Source data, or the DataSet name ARGUMENT:: destDataSet Destination data, or the DataSet name ARGUMENT:: action Run when done. The variance is passed as an argument, aka the fidelity of the new representation: a value near 1.0 means a higher fidelity to the original. METHOD:: transformPoint Given a trained model, transform the data point in a link::Classes/Buffer:: and write to an output ARGUMENT:: sourceBuffer Input data ARGUMENT:: destBuffer Output data ARGUMENT:: action Run when done. The function is passed [destBuffer, variance] as argument. EXAMPLES:: code:: s.boot; //Preliminaries: we want some audio, a couple of FluidDataSets, some Buffers, a FluidStandardize and a FluidPCA ( ~audiofile = File.realpath(FluidBufPitch.class.filenameSymbol).dirname +/+ "../AudioFiles/Tremblay-ASWINE-ScratchySynth-M.wav"; ~raw = FluidDataSet(s,\pca_help_12D); ~standardized = FluidDataSet(s,\pca_help_12Ds); ~reduced = FluidDataSet(s,\pca_help_2D); ~audio = Buffer.read(s,~audiofile); ~mfcc_feature = Buffer.new(s); ~stats = Buffer.alloc(s, 7, 12); ~datapoint = Buffer.alloc(s, 12); ~standardizer = FluidStandardize(s); ~pca = FluidPCA(s,2); ) // Load audio and run an mfcc analysis, which gives us 13 points (we'll throw the 0th away) ( ~audio = Buffer.read(s,~audiofile); FluidBufMFCC.process(s,~audio, features: ~mfcc_feature); ) // Divide the time series in 100, and take the mean of each segment and add this as a point to // the 'raw' FluidDataSet ( { var trig = LocalIn.kr(1, 1); var buf = LocalBuf(12, 1); var count = PulseCount.kr(trig) - 1; var chunkLen = (~mfcc_feature.numFrames / 100).asInteger; var stats = FluidBufStats.kr( source: ~mfcc_feature, startFrame: count * chunkLen, startChan:1, numFrames: chunkLen, stats: ~stats, trig: trig ); var rd = BufRd.kr(12, ~stats, DC.kr(0), 0, 1); var bufWr, dsWr; 12.do{|i| bufWr = BufWr.kr(rd[i], buf, DC.kr(i)); }; dsWr = FluidDataSetWr.kr(\pca_help_12D, buf: buf, trig: Done.kr(stats)); LocalOut.kr( Done.kr(dsWr)); FreeSelf.kr(count - 99); Poll.kr(trig,count); }.play; ) // wait for the post window to acknoledge the job is done. //First standardize our DataSet, so that the MFCC dimensions are on comensurate scales //Then apply the PCA in-place on the standardized data //Download the DataSet contents into an array for plotting ( ~reducedarray = Array.new(100); ~standardizer.fitTransform(~raw, ~standardized); ~pca.fitTransform(~standardized, ~reduced, action:{|x| x.postln; //pass on the variance ~reduced.dump{|x| 100.do{|i| ~reducedarray.add(x["data"][i.asString]) }}; }); ) //Visualise the 2D projection of our original 12D data ( d = ~reducedarray.flop.deepCollect(1, { |x| x.normalize}); w = Window("scatter", Rect(128, 64, 200, 200)); w.drawFunc = { Pen.use { d[0].size.do{|i| var x = (d[0][i]*200); var y = (d[1][i]*200); var r = Rect(x,y,5,5); Pen.fillColor = Color.blue; Pen.fillOval(r); } } }; w.refresh; w.front; ) :: subsection:: Server Side Queries Let's map our learned PCA dimensions to the controls of a processor code:: ( ~inputPoint = Buffer.alloc(s,12); ~predictPoint = Buffer.alloc(s,2); ~pitchingBus = Bus.control; ~catchingBus = Bus.control; ) ( ~pca.inBus_(~pitchingBus).outBus_(~catchingBus).inBuffer_(~inputPoint).outBuffer_(~predictPoint); { var mapped; var audio = BufRd.ar(1,~audio,LFSaw.ar(BufDur.ir(~audio).reciprocal).range(0, BufFrames.ir(~audio))); var mfcc = FluidMFCC.kr(audio)[1..12]; var smoothed = LagUD.kr(mfcc,1*ControlDur.ir,500*ControlDur.ir); var trig = Impulse.kr(ControlRate.ir / 2); smoothed.collect{|coeff,i| BufWr.kr([coeff],~inputPoint,i)}; Out.kr(~pitchingBus,[trig]); mapped = Latch.kr(BufRd.kr(1,~predictPoint, phase:[0,1]).linlin(-3,3,0,3),In.kr(~catchingBus)); CombC.ar(audio,3,mapped[0],mapped[1]*3) }.play(~pca.synth,addAction:\addBefore); ) ::