TITLE:: FluidStandardize summary:: Standardize a FluidDataSet categories:: FluidManipulation related:: Classes/FluidDataSet, Classes/FluidStandardize DESCRIPTION:: Standardize a link::Classes/FluidDataSet::, i.e. rescale using its mean(s) and standard deviation(s) in each dimension. See http://www.faqs.org/faqs/ai-faq/neural-nets/part2/section-16.html CLASSMETHODS:: METHOD:: new Create a new instance ARGUMENT:: server The server for this model INSTANCEMETHODS:: METHOD:: fit Fit model to a dataset without applying scaling ARGUMENT:: dataset The link::Classes/FluidDataSet:: to standardize ARGUMENT:: action A function to run when processing is complete METHOD:: transform Standardize a link::Classes/FluidDataSet::, using the learned statistics from a previous call to link::Classes/FluidStandardize#fit:: ARGUMENT:: sourceDataset The link::Classes/FluidDataSet:: to standardize ARGUMENT:: destDataset The link::Classes/FluidDataSet:: to populate with standardized data ARGUMENT:: action A function to run when processing is complete METHOD:: fitTransform Standardize a link::Classes/FluidDataSet:: into another link::Classes/FluidDataSet:: ARGUMENT:: sourceDataset The link::Classes/FluidDataSet:: to standardize ARGUMENT:: action A function to run when processing is complete METHOD:: transformPoint Standardize a new data point, using the learned statistics from a previous call to link::Classes/FluidStandardize#fit:: ARGUMENT:: sourceBuffer A link::Classes/Buffer:: with the new data point ARGUMENT:: destBuffer A link::Classes/Buffer:: to contain the standardize value ARGUMENT:: action A function to run when processing is complete EXAMPLES:: code:: s.boot; //Preliminaries: we want some audio, a couple of FluidDataSets, some Buffers and a FluidStandardize ( ~audiofile = File.realpath(FluidBufPitch.class.filenameSymbol).dirname +/+ "../AudioFiles/Tremblay-ASWINE-ScratchySynth-M.wav"; ~raw = FluidDataSet(s,\stand_help_raw); ~stand = FluidDataSet(s,\stand_help_standd); ~audio = Buffer.read(s,~audiofile); ~pitch_feature = Buffer.new(s); ~stats = Buffer.new(s); ~datapoint = Buffer.alloc(s,2); ~standardizer = FluidStandardize(s); ) // Do a pitch analysis on the audio, which gives us pitch and pitch confidence (so a 2D datum) // Divide the time series in to 10, and take the mean of each segment and add this as a point to // the 'raw' FluidDataSet ( ~raw.clear; ~stand.clear; FluidBufPitch.process(s,~audio,features:~pitch_feature,action:{ "Pitch analysis.complete. Doing stats".postln; fork{ var chunkLen = (~pitch_feature.numFrames / 10).asInteger; 10.do{ |i| s.sync; FluidBufStats.process(s,~pitch_feature,startFrame:i*chunkLen,numFrames:chunkLen,stats:~stats, action:{ ~stats.loadToFloatArray(action:{ |statsdata| [statsdata[0],statsdata[1]].postln; ~datapoint.setn(0,[statsdata[0],statsdata[1]]); s.sync; ("Adding point" ++ i).postln; ~raw.addPoint(i,~datapoint); }) }); if(i == 9) {"Analysis done, dataset ready".postln} } } }); ) //Fit the FluidStandardizer to the raw data, and then apply the scaling out of place into //our second FluidDataSet, so we can compare. //Download the dataset contents into arrays for plotting ( ~standardizer.fit(~raw); ~standardizer.transform(~raw,~stand); ~rawarray = Array.new(10); ~stdarray= Array.new(10); fork{ 10.do{|i| ~raw.getPoint(i,~datapoint,{ ~datapoint.loadToFloatArray(action:{|a| ~rawarray.add(Array.newFrom(a))}) }); s.sync; ~stand.getPoint(i,~datapoint,{ ~datapoint.loadToFloatArray(action:{|a| ~stdarray.add(Array.newFrom(a))}) }); s.sync; if(i==9){"Data downloaded".postln}; } } ) //Plot side by side. Before standardization the two dimensions have radically different scales //which can be unhelpful in many cases. Now they are zero-centered, and comparable ( ~rawarray.flatten(1).unlace.plot("Unstandardized",Rect(0,0,400,400),minval:0,maxval:[5000,1]).plotMode=\bars; ~plot2 = ~stdarray.flatten(1).unlace.plot("Standardized",Rect(410,0,400,400)).plotMode=\bars; ) ::