// define a few datasets ( ~pitchDS = FluidDataSet(s,\pitch11); ~loudDS = FluidDataSet(s,\loud11); ~mfccDS = FluidDataSet(s,\mfcc11); ~durDS = FluidDataSet(s,\dur11); //define as many buffers as we have parallel voices/threads in the extractor processing (default is 4) ~pitchbuf = 4.collect{Buffer.new}; ~statsPitchbuf = 4.collect{Buffer.new}; ~weightPitchbuf = 4.collect{Buffer.new}; ~flatPitchbuf = 4.collect{Buffer.new}; ~loudbuf = 4.collect{Buffer.new}; ~statsLoudbuf = 4.collect{Buffer.new}; ~flatLoudbuf = 4.collect{Buffer.new}; ~weightMFCCbuf = 4.collect{Buffer.new}; ~mfccbuf = 4.collect{Buffer.new}; ~statsMFCCbuf = 4.collect{Buffer.new}; ~flatMFCCbuf = 4.collect{Buffer.new}; // here we instantiate a loader as per example 0 // ~loader = FluidLoadFolder(File.realpath(FluidBufPitch.class.filenameSymbol).dirname.withTrailingSlash ++ "../AudioFiles/"); // ~loader = FluidLoadFolder("/Volumes/machins/projets/newsfeed/sons/smallnum/"); ~loader = FluidLoadFolder("/Volumes/machins/projets/newsfeed/sons/segments/"); // here we instantiate a further slicing step as per example 0 ~slicer = FluidSliceCorpus({ |src,start,num,dest| FluidBufOnsetSlice.kr(src,start,num,metric: 9, minSliceLength: 17, indices:dest, threshold:0.2,blocking: 1) }); // here we make the full processor building our 3 source datasets ~extractor = FluidProcessSlices({|src,start,num,data| var label, voice, pitch, pitchweights, pitchstats, pitchflat, loud, statsLoud, flattenLoud, mfcc, mfccweights, mfccstats, mfccflat, writePitch, writeLoud; label = data.key; voice = data.value[\voice]; // the pitch computation is independant so it starts right away pitch = FluidBufPitch.kr(src, startFrame:start, numFrames:num, numChans:1, features:~pitchbuf[voice], unit: 1, trig:1, blocking: 1); pitchweights = FluidBufThresh.kr(~pitchbuf[voice], numChans: 1, startChan: 1, destination: ~weightPitchbuf[voice], threshold: 0.1, trig:Done.kr(pitch), blocking: 1);//pull down low conf // pitchweights = FluidBufScale.kr(~pitchbuf[voice], numChans: 1, startChan: 1, destination: ~weightPitchbuf[voice],inputLow: -1, trig:Done.kr(pitch), blocking: 1); pitchstats = FluidBufStats.kr(~pitchbuf[voice], stats:~statsPitchbuf[voice], numDerivs: 1, weights: ~weightPitchbuf[voice], outliersCutoff: 1.5, trig:Done.kr(pitchweights), blocking: 1); pitchflat = FluidBufFlatten.kr(~statsPitchbuf[voice],~flatPitchbuf[voice],trig:Done.kr(pitchstats),blocking: 1); writePitch = FluidDataSetWr.kr(~pitchDS,label, -1, ~flatPitchbuf[voice], Done.kr(pitchflat),blocking: 1); // the mfcc need loudness to weigh, so let's start with that loud = FluidBufLoudness.kr(src,startFrame:start, numFrames:num, numChans:1, features:~loudbuf[voice], trig:Done.kr(writePitch), blocking: 1);//here trig was 1 //we can now flatten and write Loudness in its own trigger tree statsLoud = FluidBufStats.kr(~loudbuf[voice], stats:~statsLoudbuf[voice], numDerivs: 1, trig:Done.kr(loud), blocking: 1); flattenLoud = FluidBufFlatten.kr(~statsLoudbuf[voice],~flatLoudbuf[voice],trig:Done.kr(statsLoud),blocking: 1); writeLoud = FluidDataSetWr.kr(~loudDS,label, -1, ~flatLoudbuf[voice], Done.kr(flattenLoud),blocking: 1); //we can resume from the loud computation trigger mfcc = FluidBufMFCC.kr(src,startFrame:start,numFrames:num,numChans:1,features:~mfccbuf[voice],trig:Done.kr(writeLoud),blocking: 1);//here trig was loud mfccweights = FluidBufScale.kr(~loudbuf[voice],numChans: 1,destination: ~weightMFCCbuf[voice],inputLow: -70,inputHigh: 0, trig: Done.kr(mfcc), blocking: 1); mfccstats = FluidBufStats.kr(~mfccbuf[voice], stats:~statsMFCCbuf[voice], startChan: 1, numDerivs: 1, weights: ~weightMFCCbuf[voice], trig:Done.kr(mfccweights), blocking: 1);//remove mfcc0 and weigh by loudness instead mfccflat = FluidBufFlatten.kr(~statsMFCCbuf[voice],~flatMFCCbuf[voice],trig:Done.kr(mfccstats),blocking: 1); FluidDataSetWr.kr(~mfccDS,label, -1, ~flatMFCCbuf[voice], Done.kr(mfccflat),blocking: 1); }); ) ////////////////////////////////////////////////////////////////////////// //loading process //load and play to test if it is that quick - it is! ( t = Main.elapsedTime; ~loader.play(s,action:{(Main.elapsedTime - t).postln;"Loaded".postln;{var start, stop; PlayBuf.ar(~loader.index[~loader.index.keys.asArray.last.asSymbol][\numchans],~loader.buffer,startPos: ~loader.index[~loader.index.keys.asArray.last.asSymbol][\bounds][0])}.play;}); ) ////////////////////////////////////////////////////////////////////////// // slicing process // run the slicer ( t = Main.elapsedTime; ~slicer.play(s,~loader.buffer,~loader.index,action:{(Main.elapsedTime - t).postln;"Slicing done".postln}); ) //slice count ~slicer.index.keys.size ////////////////////////////////////////////////////////////////////////// // description process // run the descriptor extractor (errors will be given, this is normal: the pitch conditions are quite exacting and therefore many slices are not valid) ( t = Main.elapsedTime; ~extractor.play(s,~loader.buffer,~slicer.index,action:{(Main.elapsedTime - t).postln;"Features done".postln}); ) // make a dataset of durations for querying that too (it could have been made in the process loop, but hey, we have dictionaries we can manipulate too!) ( ~dict = Dictionary.new; ~temp = ~slicer.index.collect{ |k| [k[\bounds][1] - k[\bounds][0]]}; ~dict.add(\data -> ~temp); ~dict.add(\cols -> 1); ~durDS.load(~dict) ) ////////////////////////////////////////////////////////////////////////// // manipulating and querying the data ~pitchDS.print; ~loudDS.print; ~mfccDS.print; ~durDS.print; //reduce the MFCC timbral space stats (4 potential ways to explore here...) ~tempDS = FluidDataSet(s,\temp11); ~query = FluidDataSetQuery(s); ~query.addRange(0,24);//add only means and stddev of the 12 coeffs... ~query.addRange((7*12),24);// and the same stats of the first derivative (moving 7 stats x 12 mfccs to the right) ~query.transform(~mfccDS, ~tempDS); //check ~tempDS.print; //shrinking A: PCA then standardize ~pca = FluidPCA(s,4);//shrink to 4 dimensions ~timbreDSp = FluidDataSet(s,\timbreDSp11); ~pca.fitTransform(~tempDS,~timbreDSp,{|x|x.postln;})//accuracy // shrinking B: standardize then PCA // https://scikit-learn.org/stable/auto_examples/preprocessing/plot_scaling_importance.html ~stan = FluidStandardize(s); ~stanDS = FluidDataSet(s,\stan11); ~stan.fitTransform(~tempDS,~stanDS) ~timbreDSsp = FluidDataSet(s,\timbreDSsp11); ~pca.fitTransform(~stanDS,~timbreDSsp,{|x|x.postln;})//accuracy // comparing NN for fun ~targetDSp = Buffer(s) ~targetDSsp = Buffer(s) ~tree = FluidKDTree(s,5) // you can run this a few times to have fun ( ~target = ~slicer.index.keys.asArray.scramble.[0].asSymbol; ~timbreDSp.getPoint(~target, ~targetDSp); ~timbreDSsp.getPoint(~target, ~targetDSsp); ) ~tree.fit(~timbreDSp,{~tree.kNearest(~targetDSp,{|x|~nearestDSp = x.postln;})}) ~tree.fit(~timbreDSsp,{~tree.kNearest(~targetDSsp,{|x|~nearestDSsp = x.postln;})}) // play them in a row ( Routine{ 5.do{|i| var dur; v = ~slicer.index[~nearestDSp[i].asSymbol]; dur = (v[\bounds][1] - v[\bounds][0]) / s.sampleRate; {BufRd.ar(v[\numchans],~loader.buffer,Line.ar(v[\bounds][0],v[\bounds][1],dur, doneAction: 2))}.play; ~nearestDSp[i].postln; dur.wait; }; }.play; ) ( Routine{ 5.do{|i| var dur; v = ~slicer.index[~nearestDSsp[i].asSymbol]; dur = (v[\bounds][1] - v[\bounds][0]) / s.sampleRate; {BufRd.ar(v[\numchans],~loader.buffer,Line.ar(v[\bounds][0],v[\bounds][1],dur, doneAction: 2))}.play; ~nearestDSsp[i].postln; dur.wait; }; }.play; ) // for compositing ~globalDS = FluidDataSet(s,\global11); //AE ou PCA //normalize //query //segquerymusaik