// define a few processes ( ~globalDS = FluidDataSet(s,\global11); ~pitchDS = FluidDataSet(s,\pitch11); ~loudDS = FluidDataSet(s,\loud11); ~mfccDS = FluidDataSet(s,\mfcc11); ~timbreDS = FluidDataSet(s,\timbre11); //define as many buffers as we have parallel voices/threads in the extractor processing (default is 4) ~pitchbuf = 4.collect{Buffer.new}; ~statsPitchbuf = 4.collect{Buffer.new}; ~weightPitchbuf = 4.collect{Buffer.new}; ~flatPitchbuf = 4.collect{Buffer.new}; ~loudbuf = 4.collect{Buffer.new}; ~statsLoudbuf = 4.collect{Buffer.new}; ~flatLoudbuf = 4.collect{Buffer.new}; ~weightMFCCbuf = 4.collect{Buffer.new}; ~mfccbuf = 4.collect{Buffer.new}; ~statsMFCCbuf = 4.collect{Buffer.new}; ~flatMFCCbuf = 4.collect{Buffer.new}; // here we instantiate a loader as per example 0 // ~loader = FluidLoadFolder(File.realpath(FluidBufPitch.class.filenameSymbol).dirname.withTrailingSlash ++ "../AudioFiles/"); ~loader = FluidLoadFolder("/Volumes/machins/projets/newsfeed/sons/smallnum/"); // ~loader = FluidLoadFolder("/Volumes/machins/projets/newsfeed/sons/segments/"); // here we instantiate a further slicing step as per example 0 ~slicer = FluidSliceCorpus({ |src,start,num,dest| FluidBufOnsetSlice.kr(src,start,num,metric: 9, minSliceLength: 17, indices:dest, threshold:0.2,blocking: 1) }); // here we make the full processor building our 3 source datasets ~extractor = FluidProcessSlices({|src,start,num,data| var label, voice, pitch, pitchweights, pitchstats, pitchflat, loud, statsLoud, flattenLoud, mfcc, mfccweights, mfccstats, mfccflat, writePitch, writeLoud; label = data.key; voice = data.value[\voice]; // the pitch computation is independant so it starts right away pitch = FluidBufPitch.kr(src, startFrame:start, numFrames:num, numChans:1, features:~pitchbuf[voice], unit: 1, trig:1, blocking: 1); // pitchweights = FluidBufThresh.kr(~pitchbuf[voice], numChans: 1, startChan: 1, destination: ~weightPitchbuf[voice], threshold: 0.1, trig:Done.kr(pitch), blocking: 1);//pull down low conf pitchweights = FluidBufScale.kr(~pitchbuf[voice], numChans: 1, startChan: 1, destination: ~weightPitchbuf[voice],inputLow: -1, trig:Done.kr(pitch), blocking: 1); pitchstats = FluidBufStats.kr(~pitchbuf[voice], stats:~statsPitchbuf[voice], numDerivs: 1, weights: ~weightPitchbuf[voice], outliersCutoff: 1.5, trig:Done.kr(pitchweights), blocking: 1); pitchflat = FluidBufFlatten.kr(~statsPitchbuf[voice],~flatPitchbuf[voice],trig:Done.kr(pitchstats),blocking: 1); writePitch = FluidDataSetWr.kr(~pitchDS,label, -1, ~flatPitchbuf[voice], Done.kr(pitchflat),blocking: 1); // the mfcc need loudness to weigh, so let's start with that loud = FluidBufLoudness.kr(src,startFrame:start, numFrames:num, numChans:1, features:~loudbuf[voice], trig:Done.kr(writePitch), blocking: 1);//here trig was 1 //we can now flatten and write Loudness in its own trigger tree statsLoud = FluidBufStats.kr(~loudbuf[voice], stats:~statsLoudbuf[voice], numDerivs: 1, trig:Done.kr(loud), blocking: 1); flattenLoud = FluidBufFlatten.kr(~statsLoudbuf[voice],~flatLoudbuf[voice],trig:Done.kr(statsLoud),blocking: 1); writeLoud = FluidDataSetWr.kr(~loudDS,label, -1, ~flatLoudbuf[voice], Done.kr(flattenLoud),blocking: 1); //we can resume from the loud computation trigger mfcc = FluidBufMFCC.kr(src,startFrame:start,numFrames:num,numChans:1,features:~mfccbuf[voice],trig:Done.kr(writeLoud),blocking: 1);//here trig was loud mfccweights = FluidBufScale.kr(~loudbuf[voice],numChans: 1,destination: ~weightMFCCbuf[voice],inputLow: -70,inputHigh: 0, trig: Done.kr(mfcc), blocking: 1); mfccstats = FluidBufStats.kr(~mfccbuf[voice], stats:~statsMFCCbuf[voice], startChan: 1, numDerivs: 1, weights: ~weightMFCCbuf[voice], trig:Done.kr(mfccweights), blocking: 1);//remove mfcc0 and weigh by loudness instead mfccflat = FluidBufFlatten.kr(~statsMFCCbuf[voice],~flatMFCCbuf[voice],trig:Done.kr(mfccstats),blocking: 1); FluidDataSetWr.kr(~mfccDS,label, -1, ~flatMFCCbuf[voice], Done.kr(mfccflat),blocking: 1); }); ) ////////////////////////////////////////////////////////////////////////// //loading process //load and play to test if it is that quick - it is! ( t = Main.elapsedTime; ~loader.play(s,action:{(Main.elapsedTime - t).postln;"Loaded".postln;{var start, stop; PlayBuf.ar(~loader.index[~loader.index.keys.asArray.last.asSymbol][\numchans],~loader.buffer,startPos: ~loader.index[~loader.index.keys.asArray.last.asSymbol][\bounds][0])}.play;}); ) ////////////////////////////////////////////////////////////////////////// // slicing process // run the slicer ( t = Main.elapsedTime; ~slicer.play(s,~loader.buffer,~loader.index,action:{(Main.elapsedTime - t).postln;"Slicing done".postln}); ) //slice count ~slicer.index.keys.size ////////////////////////////////////////////////////////////////////////// // description process // run the descriptor extractor ( t = Main.elapsedTime; ~extractor.play(s,~loader.buffer,~slicer.index,action:{(Main.elapsedTime - t).postln;"Features done".postln}); ) ////////////////////////////////////////////////////////////////////////// // manipulating and querying the data ~pitchDS.print; ~loudDS.print; ~mfccDS.print; ~loudbuf[0].query ~statsLoudbuf[0].query ~flatLoudbuf[0].query ~pitchbuf[0].query ~statsPitchbuf[0].query ~weightPitchbuf[0].query ~flatPitchbuf[0].query //standardise //AE ou PCA //normalize //query //segquerymusaik