TITLE:: FluidKMeans summary:: Cluster data points with K-Means categories:: FluidManipulation related:: Classes/FluidDataSet, Classes/FluidLabelSet, Classes/FluidKNNClassifier, Classes/FluidKNNRegressor DESCRIPTION:: Uses the K-Means algorithm to learn clusters from a link::Classes/FluidDataSet:: https://scikit-learn.org/stable/tutorial/statistical_inference/unsupervised_learning.html#clustering-grouping-observations-together CLASSMETHODS:: METHOD:: new Construct a new K Means model on the passed server. The parameters code::numClusters:: and code::maxIter:: can be modulated on an existing instance. ARGUMENT:: server If nil will use Server.default. ARGUMENT:: numClusters The number of clusters to classify data into. ARGUMENT:: maxIter The maximum number of iterations the algorithm will use whilst fitting. INSTANCEMETHODS:: PRIVATE::k METHOD:: fit Identify code::k:: clusters in a link::Classes/FluidDataSet:: ARGUMENT:: dataSet A link::Classes/FluidDataSet:: of data points. ARGUMENT:: action A function to run when fitting is complete, taking as its argument an array with the number of data points for each cluster. METHOD:: predict Given a trained object, return the cluster ID for each data point in a DataSet to a label set. ARGUMENT:: dataSet a link::Classes/FluidDataSet:: containing the data to predict. ARGUMENT:: labelSet a link::Classes/FluidLabelSet:: to retrieve the predicted clusters. ARGUMENT:: action A function to run when the server responds. METHOD:: fitPredict Run link::Classes/FluidKMeans#*fit:: and link::Classes/FluidKMeans#*predict:: in a single pass: i.e. train the model on the incoming link::Classes/FluidDataSet:: and then return the learned clustering to the passed link::Classes/FluidLabelSet:: ARGUMENT:: dataSet a link::Classes/FluidDataSet:: containing the data to fit and predict. ARGUMENT:: labelSet a link::Classes/FluidLabelSet:: to retrieve the predicted clusters. ARGUMENT:: action A function to run when the server responds METHOD:: predictPoint Given a trained object, return the cluster ID for a data point in a link::Classes/Buffer:: ARGUMENT:: buffer a link::Classes/Buffer:: containing a data point. ARGUMENT:: action A function to run when the server responds, taking the ID of the cluster as its argument. METHOD:: predict Report cluster assignments for previously unseen data. ARGUMENT:: dataSet A link::Classes/FluidDataSet:: of data points. ARGUMENT:: labelSet A link::Classes/FluidLabelSet:: to contain assignments. ARGUMENT:: action A function to run when complete, taking an array of the counts for each category as its argument. METHOD:: fitTransform Run link::Classes/FluidKMeans#*fit:: and link::Classes/FluidKMeans#*predict:: in a single pass: i.e. train the model on the incoming link::Classes/FluidDataSet:: and then return the learned clustering to the passed link::Classes/FluidLabelSet:: ARGUMENT:: srcDataSet a link::Classes/FluidDataSet:: containing the data to fit and predict. ARGUMENT:: dstDataSet a link::Classes/FluidLabelSet:: to retrieve the predicted clusters. ARGUMENT:: action A function to run when the server responds METHOD:: transformPoint Given a trained object, return the cluster ID for a data point in a link::Classes/Buffer:: ARGUMENT:: sourceBuffer a link::Classes/Buffer:: containing a data point. ARGUMENT:: targetBuffer a link::Classes/Buffer:: containing a data point. ARGUMENT:: action A function to run when the server responds, taking the ID of the cluster as its argument. METHOD:: transform Report cluster assignments for previously unseen data. ARGUMENT:: srcDataSet A link::Classes/FluidDataSet:: of data points. ARGUMENT:: dstDataSet A link::Classes/FluidLabelSet:: to contain assignments. ARGUMENT:: action A function to run when complete, taking an array of the counts for each category as its argument. METHOD:: getMeans Report cluster assignments for previously unseen data. ARGUMENT:: dataSet A link::Classes/FluidDataSet:: of data points. ARGUMENT:: action A function to run when complete, taking an array of the counts for each category as its argument. METHOD:: setMeans Report cluster assignments for previously unseen data. ARGUMENT:: dataSet A link::Classes/FluidDataSet:: of data points. ARGUMENT:: action A function to run when complete, taking an array of the counts for each category as its argument. EXAMPLES:: code:: ( //Make some clumped 2D points and place into a DataSet ~points = (4.collect{ 64.collect{(1.sum3rand) + [1,-1].choose}.clump(2) }).flatten(1) * 0.5; fork{ ~dataSet = FluidDataSet(s); d = Dictionary.with( *[\cols -> 2,\data -> Dictionary.newFrom( ~points.collect{|x, i| [i, x]}.flatten)]); s.sync; ~dataSet.load(d, {~dataSet.print}); } ) // Create a KMeans instance and a LabelSet for the cluster labels in the server ~clusters = FluidLabelSet(s); ~kmeans = FluidKMeans(s); // Fit into 4 clusters ( ~kmeans.fitPredict(~dataSet,~clusters,action: {|c| "Fitted.\n # Points in each cluster:".postln; c.do{|x,i| ("Cluster" + i + "->" + x.asInteger + "points").postln; } }); ) // Cols of kmeans should match DataSet, size is the number of clusters ~kmeans.cols; ~kmeans.size; ~kmeans.dump; // Retrieve labels of clustered points ( ~assignments = Array.new(128); fork{ 128.do{ |i| ~clusters.getLabel(i,{|clusterID| (i.asString+clusterID).postln; ~assignments.add(clusterID) }); s.sync; } } ) //or faster by sorting the IDs ~clusters.dump{|x|~assignments = x.at("data").atAll(x.at("data").keys.asArray.sort{|a,b|a.asInteger < b.asInteger}).flatten.postln;} //Visualise: we're hoping to see colours neatly mapped to quandrants... ( d = ((~points + 1) * 0.5).flatten(1).unlace; w = Window("scatter", Rect(128, 64, 200, 200)); ~colours = [Color.blue,Color.red,Color.green,Color.magenta]; w.drawFunc = { Pen.use { d[0].size.do{|i| var x = (d[0][i]*200); var y = (d[1][i]*200); var r = Rect(x,y,5,5); Pen.fillColor = ~colours[~assignments[i].asInteger]; Pen.fillOval(r); } } }; w.refresh; w.front; ) // single point transform on arbitrary value ~inbuf = Buffer.loadCollection(s,0.5.dup); ~kmeans.predictPoint(~inbuf,{|x|x.postln;}); :: subsection:: Accessing the means We can get and set the means for each cluster, their centroid. code:: ~centroids = FluidDataSet(s); ~kmeans.getMeans(~centroids, {~centroids.print}); ~centroids.load(Dictionary.newFrom([\cols, 2, \data, Dictionary.newFrom([\0, [0.5,0.5], \1, [-0.5,0.5], \2, [0.5,-0.5], \3, [-0.5,-0.5]])])); ~centroids.print ~kmeans.setMeans(~centroids, {~kmeans.predict(~dataSet,~clusters,{~clusters.dump{|x|var count = 0.dup(4); x["data"].keysValuesDo{|k,v|count[v[0].asInteger] = count[v[0].asInteger] + 1;};count.postln}})}); ~kmeans.clear ~kmeans.predict(~dataSet,~clusters) :: subsection:: Cluster-distance Space You can get the euclidian distance of a given point to each cluster. code:: b = Buffer.sendCollection(s,[0.5,0.5]) c = Buffer(s) ~kmeans.transformPoint(b,c,{|x|x.query;x.getn(0,x.numFrames,{|y|y.postln})}) :: subsection:: Queries in a Synth This is the equivalent of predictPoint, but wholly on the server code:: ( { var trig = Impulse.kr(5); var point = WhiteNoise.kr(1.dup); var inputPoint = LocalBuf(2); var outputPoint = LocalBuf(1); Poll.kr(trig, point, [\pointX,\pointY]); point.collect{ |p,i| BufWr.kr([p],inputPoint,i)}; ~kmeans.kr(trig,inputPoint,outputPoint); Poll.kr(trig,BufRd.kr(1,outputPoint,0,interpolation:0),\cluster); }.play; ) // to sonify the output, here are random values alternating quadrant, generated more quickly as the cursor moves rightwards ( { var trig = Impulse.kr(MouseX.kr(0,1).exprange(0.5,ControlRate.ir / 2)); var step = Stepper.kr(trig,max:3); var point = TRand.kr(-0.1, [0.1, 0.1], trig) + [step.mod(2).linlin(0,1,-0.6,0.6),step.div(2).linlin(0,1,-0.6,0.6)] ; var inputPoint = LocalBuf(2); var outputPoint = LocalBuf(1); point.collect{|p,i| BufWr.kr([p],inputPoint,i)}; ~kmeans.kr(trig,inputPoint,outputPoint); SinOsc.ar((BufRd.kr(1,outputPoint,0,interpolation:0) + 69).midicps,mul: 0.1); }.play; ) ::