#pragma once #include "SCBufferAdaptor.hpp" #include #include #include #include #include #include #include #include #include namespace fluid { namespace client { template class FluidSCWrapper; namespace impl { template struct Setter; template struct ArgumentGetter; template struct ControlGetter; template using msg_iter_method = T (sc_msg_iter::*)(T); //////////////////////////////////////////////////////////////////////////////////////////////////////////////// //Iterate over kr/ir inputs via callbacks from params object struct FloatControlsIter { FloatControlsIter(float** vals, size_t N):mValues(vals), mSize(N) {} float next() { assert(mCount < mSize && "Boundary error fail horror"); float f = *mValues[mCount++]; return f; } // float operator[](size_t i) // { // assert(i < mSize); // return *mValues[i]; // } void reset(float** vals) { mValues = vals; mCount = 0; } private: float** mValues; size_t mSize; size_t mCount{0}; }; //General case template struct GetControl { T operator()(World*, FloatControlsIter& controls) { return controls.next(); } }; template struct ControlGetter : public GetControl {}; //Specializations template struct ControlGetter { auto operator() (World* w, FloatControlsIter& iter) { typename LongT::type bufnum = iter.next(); return std::unique_ptr(bufnum >= 0 ? new SCBufferAdaptor(bufnum,w): nullptr); } }; template struct ControlGetter { typename FloatPairsArrayT::type operator()(World*, FloatControlsIter& iter) { return {{iter.next(),iter.next()},{iter.next(),iter.next()}}; } }; template struct ControlGetter { typename FFTParamsT::type operator()(World*, FloatControlsIter& iter) { return {static_cast(iter.next()),static_cast(iter.next()),static_cast(iter.next())}; } }; //////////////////////////////////////////////////////////////////////////////////////////////////////////////// /// Iterate over arguments in sc_msg_iter, via callbacks from params object template Method> struct GetArgument { T operator()(World* w, sc_msg_iter *args) { T r = (args->*Method)(T{0}); return r; } }; //General cases template struct ArgumentGetter : public GetArgument {}; template struct ArgumentGetter : public GetArgument {}; template struct ArgumentGetter : public GetArgument {}; //Specializations template struct ArgumentGetter { auto operator() (World* w, sc_msg_iter *args) { typename LongT::type bufnum = args->geti(-1); return std::unique_ptr(bufnum >= 0 ? new SCBufferAdaptor(bufnum,w) : nullptr); } }; template struct ArgumentGetter { typename FloatPairsArrayT::type operator()(World* w, sc_msg_iter *args) { return {{args->getf(),args->getf()},{args->getf(),args->getf()}}; } }; template struct ArgumentGetter { typename FFTParamsT::type operator()(World* w, sc_msg_iter *args) { return {args->geti(),args->geti(),args->geti()}; } }; //////////////////////////////////////////////////////////////////////////////////////////////////////////////// //Real Time Processor template class RealTime : public SCUnit { using HostVector = FluidTensorView; // using Client = typename Wrapper::ClientType; public: static void setup(InterfaceTable *ft, const char *name) { registerUnit(ft, name); ft->fDefineUnitCmd(name,"latency",doLatency); } static void doLatency(Unit *unit, sc_msg_iter *args) { float l[] {static_cast(static_cast(unit)->mClient.latency())}; auto ft = Wrapper::getInterfaceTable(); std::stringstream ss; ss << '/' << Wrapper::getName() << "_latency"; std::cout << ss.str() << '\n'; ft->fSendNodeReply(&unit->mParent->mNode,-1,ss.str().c_str() , 1, l); } RealTime(): mControlsIterator{mInBuf + mSpecialIndex + 1,mNumInputs - mSpecialIndex - 1}, mParams{*Wrapper::getParamDescriptors()}, mClient{Wrapper::setParams(mParams,mWorld->mVerbosity > 0, mWorld, mControlsIterator)} {} void init() { assert(!(mClient.audioChannelsOut() > 0 && mClient.controlChannelsOut() > 0) && "Client can't have both audio and control outputs"); mInputConnections.reserve(mClient.audioChannelsIn()); mOutputConnections.reserve(mClient.audioChannelsOut()); mAudioInputs.reserve(mClient.audioChannelsIn()); mOutputs.reserve(std::max(mClient.audioChannelsOut(),mClient.controlChannelsOut())); for (int i = 0; i < mClient.audioChannelsIn(); ++i) { mInputConnections.emplace_back(isAudioRateIn(i)); mAudioInputs.emplace_back(nullptr, 0, 0); } for (int i = 0; i < mClient.audioChannelsOut(); ++i) { mOutputConnections.emplace_back(true); mOutputs.emplace_back(nullptr, 0, 0); } for (int i = 0; i < mClient.controlChannelsOut(); ++i) { mOutputs.emplace_back(nullptr, 0, 0); } set_calc_function(); Wrapper::getInterfaceTable()->fClearUnitOutputs(this, 1); } void next(int n) { mControlsIterator.reset(mInBuf + 1); //mClient.audioChannelsIn()); Wrapper::setParams(mParams,mWorld->mVerbosity > 0, mWorld,mControlsIterator); // forward on inputs N + audio inputs as params const Unit *unit = this; for (int i = 0; i < mClient.audioChannelsIn(); ++i) { if (mInputConnections[i]) mAudioInputs[i].reset(IN(i), 0, fullBufferSize()); } for (int i = 0; i < mClient.audioChannelsOut(); ++i) { if (mOutputConnections[i]) mOutputs[i].reset(out(i), 0, fullBufferSize()); } for(int i = 0; i < mClient.controlChannelsOut();++i) { mOutputs[i].reset(out(i),0,1); } mClient.process(mAudioInputs, mOutputs); } private: std::vector mInputConnections; std::vector mOutputConnections; std::vector mAudioInputs; std::vector mOutputs; FloatControlsIter mControlsIterator; protected: ParameterSet mParams; Client mClient; }; //////////////////////////////////////////////////////////////////////////////////////////////////////////////// /// Non Real Time Processor template class NonRealTime { public: static void setup(InterfaceTable *ft, const char *name) { DefinePlugInCmd(name, launch, nullptr); } NonRealTime(World *world,sc_msg_iter *args): mParams{*Wrapper::getParamDescriptors()}, mClient{mParams} {} void init(){}; static void launch(World *world, void *inUserData, struct sc_msg_iter *args, void *replyAddr) { Wrapper *w = new Wrapper(world,args); //this has to be on the heap, because it doesn't get destoryed until the async command is done int argsPosition = args->count; auto argsRdPos = args->rdpos; Result result = validateParameters(w, world, args); if (!result.ok()) { std::cout << "FluCoMa Error " << Wrapper::getName() << ": " << result.message().c_str(); delete w; return; } args->count = argsPosition; args->rdpos = argsRdPos; Wrapper::setParams(w->mParams,false, world, args); size_t msgSize = args->getbsize(); std::vector completionMessage(msgSize); // char * completionMsgData = 0; if (msgSize) { args->getb(completionMessage.data(), msgSize); } world->ft->fDoAsynchronousCommand(world, replyAddr, Wrapper::getName(), w, process, exchangeBuffers, tidyUp, destroy,msgSize, completionMessage.data()); } static bool process(World *world, void *data) { return static_cast(data)->process(world); } static bool exchangeBuffers(World *world, void *data) { return static_cast(data)->exchangeBuffers(world); } static bool tidyUp(World *world, void *data) { return static_cast(data)->tidyUp(world); } static void destroy(World *world, void *data) { // void* c = static_cast(data)->mCompletionMessage; // if(c) world->ft->fRTFree(world,c); delete static_cast(data); } protected: ParameterSet mParams; Client mClient; private: static Result validateParameters(NonRealTime *w, World* world, sc_msg_iter *args) { auto results = w->mParams.template checkParameterValues(world, args); for (auto &r : results) { if (!r.ok()) return r; } return {}; } bool process(World *world) { Result r = mClient.process();///mInputs, mOutputs); if(!r.ok()) { std::cout << "FluCoMa Error " << Wrapper::getName() << ": " << r.message().c_str(); return false; } return true; } bool exchangeBuffers(World *world) { mParams.template forEachParamType(world); // for (auto &b : mBuffersOut) b.assignToRT(world); return true; } bool tidyUp(World *world) { // for (auto &b : mBuffersIn) b.cleanUp(); // for (auto &b : mBuffersOut) b.cleanUp() mParams.template forEachParamType(); return true; } template struct AssignBuffer { void operator()(typename BufferT::type& p, World* w) { if(auto b = static_cast(p.get())) b->assignToRT(w); } }; template struct CleanUpBuffer { void operator()(typename BufferT::type& p) { if(auto b = static_cast(p.get())) b->cleanUp(); } }; // std::vector mBuffersIn; // std::vector mBuffersOut; // std::vector mInputs; // std::vector mOutputs; char * mCompletionMessage = nullptr; void * mReplyAddr = nullptr; const char * mName = nullptr; }; //////////////////////////////////////////////////////////////////////////////////////////////////////////////// /// An impossible monstrosty template class NonRealTimeAndRealTime : public RealTime, public NonRealTime { static void setup(InterfaceTable *ft, const char *name) { RealTime::setup(ft, name); NonRealTime::setup(ft, name); } }; //////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Template Specialisations for NRT/RT template class FluidSCWrapperImpl; template class FluidSCWrapperImpl : public NonRealTime { public: FluidSCWrapperImpl(World* w, sc_msg_iter *args): NonRealTime(w,args){}; }; template class FluidSCWrapperImpl : public RealTime {}; //////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Make base class(es), full of CRTP mixin goodness template using FluidSCWrapperBase = FluidSCWrapperImpl,Params, isNonRealTime, isRealTime>; } // namespace impl //////////////////////////////////////////////////////////////////////////////////////////////////////////////// ///The main wrapper template class FluidSCWrapper : public impl::FluidSCWrapperBase { public: using Client = C; using Params = P; FluidSCWrapper() //mParams{*getParamDescriptors()}, //impl::FluidSCWrapperBase() { impl::FluidSCWrapperBase::init(); } FluidSCWrapper(World* w, sc_msg_iter *args): impl::FluidSCWrapperBase(w,args) { impl::FluidSCWrapperBase::init(); } static const char *getName(const char *setName = nullptr) { static const char *name = nullptr; return (name = setName ? setName : name); } static Params *getParamDescriptors(Params *setParams = nullptr) { static Params* descriptors = nullptr; return (descriptors = setParams ? setParams : descriptors); } static InterfaceTable *getInterfaceTable(InterfaceTable *setTable = nullptr) { static InterfaceTable *ft = nullptr; return (ft = setTable ? setTable : ft); } static void setup(Params& p, InterfaceTable *ft, const char *name) { getName(name); getInterfaceTable(ft); getParamDescriptors(&p); impl::FluidSCWrapperBase::setup(ft, name); } template static auto& setParams(ParameterSet& p, bool verbose, World* world, impl::FloatControlsIter& inputs) { p.template setParameterValues(verbose, world, inputs); return p; } template static auto& setParams(ParameterSet& p, bool verbose, World* world, sc_msg_iter *args) { p.template setParameterValues(verbose,world, args); return p; } // impl::ParameterSet mParams; // Client &client() { return mClient; } // //private: // Client mClient; }; template