TITLE:: FluidNormalize summary:: Normalize a FluidDataSet categories:: FluidManipulation related:: Classes/FluidStandardize, Classes/FluidDataSet DESCRIPTION:: Normalize the entries of a link::Classes/FluidDataSet::, or normalize a data point according to the learned bounds of a data set. On the server. See http://www.faqs.org/faqs/ai-faq/neural-nets/part2/section-16.html CLASSMETHODS:: private:: kr METHOD:: new Create a new instance ARGUMENT:: server The link::Classes/Server:: on which to run ARGUMENT:: min Minimum output value, default 0 ARGUMENT:: max Maximum output value, default 1 INSTANCEMETHODS:: METHOD:: fit Compute the normalization factors from a link::Classes/FluidDataSet:: for later. ARGUMENT:: dataset The link::Classes/FluidDataSet:: to normalize ARGUMENT:: action A function to run when processing is complete METHOD:: transform Normalize a link::Classes/FluidDataSet:: into another link::Classes/FluidDataSet::, using the learned extrema from a previous call to link::Classes/FluidNormalize#fit:: ARGUMENT:: sourceDataset The link::Classes/FluidDataSet:: to normalize ARGUMENT:: destDataset The link::Classes/FluidDataSet:: to populate with normalized data ARGUMENT:: action A function to run when processing is complete METHOD:: fitTransform Normalize a link::Classes/FluidDataSet:: ARGUMENT:: sourceDataset The link::Classes/FluidDataSet:: to normalize ARGUMENT:: destDataset The link::Classes/FluidDataSet:: to populate with normalized data ARGUMENT:: action A function to run when processing is complete METHOD:: transformPoint Normalize a new data point, using the learned extrema from a previous call to link::Classes/FluidNormalize#fit:: ARGUMENT:: sourceBuffer A link::Classes/Buffer:: with the new data point ARGUMENT:: destBuffer A link::Classes/Buffer:: to contain the normalized value ARGUMENT:: action A function to run when processing is complete EXAMPLES:: code:: s.boot; //Preliminaries: we want some audio, a couple of FluidDataSets, some Buffers and a FluidNormalize ( ~audiofile = File.realpath(FluidBufPitch.class.filenameSymbol).dirname +/+ "../AudioFiles/Tremblay-ASWINE-ScratchySynth-M.wav"; ~raw = FluidDataSet(s,\norm_help_raw); ~norm = FluidDataSet(s,\norm_help_normd); ~pitch_feature = Buffer.new(s); ~stats = Buffer.alloc(s, 7, 2); ~normalizer = FluidNormalize(s); ) // Load audio and run a pitch analysis, which gives us pitch and pitch confidence (so a 2D datum) ( ~audio = Buffer.read(s,~audiofile); FluidBufPitch.process(s,~audio, features: ~pitch_feature); ) // Divide the time series in to 10, and take the mean of each segment and add this as a point to // the 'raw' FluidDataSet ( { var trig = LocalIn.kr(1, 1); var buf = LocalBuf(2, 1); var count = PulseCount.kr(trig) - 1; var chunkLen = (~pitch_feature.numFrames / 10).asInteger; var stats = FluidBufStats.kr( source: ~pitch_feature, startFrame: count * chunkLen, numFrames: chunkLen, stats: ~stats, trig: trig ); var rd = BufRd.kr(2, ~stats, DC.kr(0), 0, 1);// pick only mean pitch and confidence var wr1 = BufWr.kr(rd[0], buf, DC.kr(0)); var wr2 = BufWr.kr(rd[1], buf, DC.kr(1)); var dsWr = FluidDataSetWr.kr(\norm_help_raw, buf: buf, trig: Done.kr(stats)); LocalOut.kr( Done.kr(dsWr)); FreeSelf.kr(count - 9); }.play; ) // Normalize and load to language-side array ( ~rawarray = Array.new(10); ~normedarray= Array.new(10); ~normalizer.fitTransform(~raw,~norm, { ~raw.dump{|x| 10.do{|i| ~rawarray.add(x["data"][i.asString]) }}; ~norm.dump{|x| 10.do{|i| ~normedarray.add(x["data"][i.asString]) }}; }); ) //Plot side by side. Before normalization the two dimensions have radically different scales //which can be unhelpful in many cases ( ~rawarray.flatten(1).unlace.plot("Unnormalized",Rect(0,0,400,400),minval:0,maxval:[5000,1]).plotMode=\bars; ~plot2 = ~normedarray.flatten(1).unlace.plot("Normalized",Rect(410,0,400,400)).plotMode=\bars; ) ::