TITLE:: FluidGrid summary:: Constrain a 2D DataSet into a Grid. categories:: Libraries>FluidCorpusManipulation related:: Classes/FluidMDS, Classes/FluidPCA, Classes/FluidDataSet DESCRIPTION:: Hello. I put stuff in a 2-dimension link::Classes/FluidDataSet:: in the most even grid possible by minimising the distance I need to move each item around, using some clever algorithms. The grid space can be oversampled to allow for a sparser representation. The resulting grid shape can be constraint in one axis. Please refer to a webpage and an article for more information on the algorithm. CLASSMETHODS:: METHOD:: new Make a new instance ARGUMENT:: server The server on which to run this model ARGUMENT:: oversample A factor to oversample the destination grid. The default is 1, so the most compact grid possible will be yield. Factors of 2 or more will allow a larger destination grid, which will respect the original shape a little more, but will therefore be sparser. ARGUMENT:: extent The size to which the selected axis will be constraint to. The default is 0, which turns the constraints off. ARGUMENT:: axis The axis on which the constraint size is applied to. The default (0) is horizontal, and (1) is vertical. INSTANCEMETHODS:: PRIVATE:: init METHOD:: fitTransform Fit the model to a link::Classes/FluidDataSet:: and write the new projected data to a destination FluidDataSet. ARGUMENT:: sourceDataSet Source data, or the DataSet name ARGUMENT:: destDataSet Destination data, or the DataSet name ARGUMENT:: action Run when done EXAMPLES:: STRONG::A didactic example:: code:: /// make a simple grid of numbers ~simple = Dictionary.newFrom(36.collect{|i|[i.asSymbol, [i.mod(9), i.div(9)]]}.flatten(1)); //look at it ( w = Window("the source", Rect(128, 64, 230, 100)); w.drawFunc = { Pen.use { ~simple.keysValuesDo{|key, val| Pen.stringCenteredIn(key, Rect((val[0] * 25), (val[1] * 25), 25, 25), Font( "Helvetica", 12 ), Color.black) } } }; w.refresh; w.front; ) //load it in a dataset ~raw = FluidDataSet(s); ~raw.load(Dictionary.newFrom([\cols, 2, \data, ~simple])); // make a grid out of it ~grid = FluidGrid(s); ~gridified = FluidDataSet(s); ~grid.fitTransform(~raw, ~gridified, action:{~gridified.dump{|x|~gridifiedDict = x["data"];\gridded.postln;}}) // watch the grid ( w = Window("a perspective", Rect(358, 64, 350, 230)); w.drawFunc = { Pen.use { ~gridifiedDict.keysValuesDo{|key, val| Pen.stringCenteredIn(key, Rect((val[0] * 25), (val[1] * 25), 25, 25), Font( "Helvetica", 12 ), Color.black) } } }; w.refresh; w.front; ) // change the constraints and draw again ( ~grid.axis_(0).extent_(4).fitTransform(~raw, ~gridified, action:{ ~gridified.dump{|x| ~gridifiedDict = x["data"];\gridded.postln; {w.refresh;}.defer; }}) ) // here we constrain in the other dimension ( ~grid.axis_(1).extent_(3).fitTransform(~raw, ~gridified, action:{ ~gridified.dump{|x| ~gridifiedDict = x["data"];\gridded.postln; {w.refresh;}.defer; }}) ) //oversampling yields the shape...ish! ( ~grid.oversample_(2).extent_(0).fitTransform(~raw, ~gridified, action:{ ~gridified.dump{|x| ~gridifiedDict = x["data"];\gridded.postln; {w.refresh;}.defer; }}) ) :: STRONG::A more colourful example:: code:: // make all dependencies ( ~raw = FluidDataSet(s); ~standardized = FluidDataSet(s); ~reduced = FluidDataSet(s); ~normalized = FluidDataSet(s); ~standardizer = FluidStandardize(s); ~normalizer = FluidNormalize(s, 0.05, 0.95); ~umap = FluidUMAP(s).numDimensions_(2).numNeighbours_(5).minDist_(0.2).iterations_(50).learnRate_(0.2); ~grid = FluidGrid(s); ~gridified = FluidDataSet(s); ) // build a dataset of 400 points in 3D (colour in RGB) ~colours = Dictionary.newFrom(400.collect{|i|[("entry"++i).asSymbol, 3.collect{1.0.rand}]}.flatten(1)); ~raw.load(Dictionary.newFrom([\cols, 3, \data, ~colours])); //First standardize our DataSet, then apply the UMAP to get 2 dimensions, then normalise these 2 for drawing in the full window size ( ~standardizer.fitTransform(~raw,~standardized,action:{"Standardized".postln}); ~umap.fitTransform(~standardized,~reduced,action:{"Finished UMAP".postln}); ~normalizer.fitTransform(~reduced,~normalized,action:{"Normalized Output".postln}); ) //we recover the reduced dataset ~normalized.dump{|x| ~normalizedDict = x["data"]}; //Visualise the 2D projection of our original 4D data ( w = Window("a perspective", Rect(128, 64, 200, 200)); w.drawFunc = { Pen.use { ~normalizedDict.keysValuesDo{|key, val| Pen.fillColor = Color.new(~colours[key.asSymbol][0], ~colours[key.asSymbol][1],~colours[key.asSymbol][2]); Pen.fillOval(Rect((val[0] * 200), (val[1] * 200), 5, 5)); ~colours[key.asSymbol].flat; } } }; w.refresh; w.front; ) //Force the UMAP-reduced dataset into a grid, normalise for viewing then print in another window ( ~grid.fitTransform(~reduced,~gridified,action:{"Gridded Output".postln; ~normalizer.fitTransform(~gridified,~normalized,action:{"Normalized Output".postln; ~normalized.dump{|x| ~normalizedDict = x["data"]; { y = Window("a grid", Rect(328, 64, 200, 200)); y.drawFunc = { Pen.use { ~normalizedDict.keysValuesDo{|key, val| Pen.fillColor = Color.new(~colours[key.asSymbol][0], ~colours[key.asSymbol][1],~colours[key.asSymbol][2]); Pen.fillOval(Rect((val[0] * 200), (val[1] * 200), 5, 5)); ~colours[key.asSymbol].flat; } } }; y.refresh; y.front; }.defer; }; }); }); ) // This looks ok, but let's improve it with oversampling ( ~grid.oversample_(3).fitTransform(~reduced,~gridified,action:{"Gridded Output".postln; ~normalizer.fitTransform(~gridified,~normalized,action:{"Normalized Output".postln; ~normalized.dump{|x| ~normalizedDict = x["data"]; { y.refresh; }.defer; }; }); }); ) ::