TITLE:: FluidKMeans summary:: Cluster data points with K-Means categories:: FluidManipulation related:: Classes/FluidDataSet, Classes/FluidLabelSet, Classes/FluidKNNClassifier, Classes/FluidKNNRegressor DESCRIPTION:: Uses the K-Means algorithm to learn clusters from a link::Classes/FluidDataSet:: https://scikit-learn.org/stable/tutorial/statistical_inference/unsupervised_learning.html#clustering-grouping-observations-together CLASSMETHODS:: METHOD:: new Construct a new K Means model on the passed server. The parameters code::numClusters:: and code::maxIter:: can be modulated on an existing instance. ARGUMENT:: server If nil will use Server.default. ARGUMENT:: numClusters The number of clusters to classify data into. ARGUMENT:: maxIter The maximum number of iterations the algorithm will use whilst fitting. INSTANCEMETHODS:: PRIVATE::k METHOD:: fit Identify code::k:: clusters in a link::Classes/FluidDataSet:: ARGUMENT:: dataSet A link::Classes/FluidDataSet:: of data points. ARGUMENT:: action A function to run when fitting is complete, taking as its argument an array with the number of data points for each cluster. METHOD:: predict Given a trained object, return the cluster ID for each data point in a DataSet to a label set. ARGUMENT:: dataSet a link::Classes/FluidDataSet:: containing the data to predict. ARGUMENT:: labelSet a link::Classes/FluidLabelSet:: to retrieve the predicted clusters. ARGUMENT:: action A function to run when the server responds. METHOD:: fitPredict Run link::Classes/FluidKMeans#*fit:: and link::Classes/FluidKMeans#*predict:: in a single pass: i.e. train the model on the incoming link::Classes/FluidDataSet:: and then return the learned clustering to the passed link::Classes/FluidLabelSet:: ARGUMENT:: dataSet a link::Classes/FluidDataSet:: containing the data to fit and predict. ARGUMENT:: labelSet a link::Classes/FluidLabelSet:: to retrieve the predicted clusters. ARGUMENT:: action A function to run when the server responds METHOD:: predictPoint Given a trained object, return the cluster ID for a data point in a link::Classes/Buffer:: ARGUMENT:: buffer a link::Classes/Buffer:: containing a data point. ARGUMENT:: action A function to run when the server responds, taking the ID of the cluster as its argument. METHOD:: predict Report cluster assignments for previously unseen data. ARGUMENT:: dataSet A link::Classes/FluidDataSet:: of data points. ARGUMENT:: labelSet A link::Classes/FluidLabelSet:: to contain assignments. ARGUMENT:: action A function to run when complete, taking an array of the counts for each category as its argument. EXAMPLES:: Server.default.options.outDevice = "Built-in Output" code:: ( //Make some clumped 2D points and place into a DataSet ~points = (4.collect{ 64.collect{(1.sum3rand) + [1,-1].choose}.clump(2) }).flatten(1) * 0.5; fork{ ~dataSet = FluidDataSet.new(s,\kmeans_help_rand2d); d = Dictionary.with( *[\cols -> 2,\data -> Dictionary.newFrom( ~points.collect{|x, i| [i, x]}.flatten)]); s.sync; ~dataSet.load(d, {~dataSet.print}); } ) // Create a KMeans instance and a LabelSet for the cluster labels in the server ~clusters = FluidLabelSet(s,\kmeans_help_clusters); ~kmeans = FluidKMeans(s); // Fit into 4 clusters ( ~kmeans.fitPredict(~dataSet,~clusters,action: {|c| "Fitted.\n # Points in each cluster:".postln; c.do{|x,i| ("Cluster" + i + "->" + x.asInteger + "points").postln; } }); ) // Cols of kmeans should match DataSet, size is the number of clusters ~kmeans.cols; ~kmeans.size; ~kmeans.dump; // Retrieve labels of clustered points ( ~assignments = Array.new(128); fork{ 128.do{ |i| ~clusters.getLabel(i,{|clusterID| (i.asString+clusterID).postln; ~assignments.add(clusterID) }); s.sync; } } ) //or faster by sorting the IDs ~clusters.dump{|x|~assignments = x.at("data").atAll(x.at("data").keys.asArray.sort{|a,b|a.asInteger < b.asInteger}).flatten.postln;} //Visualise: we're hoping to see colours neatly mapped to quandrants... ( d = ((~points + 1) * 0.5).flatten(1).unlace; w = Window("scatter", Rect(128, 64, 200, 200)); ~colours = [Color.blue,Color.red,Color.green,Color.magenta]; w.drawFunc = { Pen.use { d[0].size.do{|i| var x = (d[0][i]*200); var y = (d[1][i]*200); var r = Rect(x,y,5,5); Pen.fillColor = ~colours[~assignments[i].asInteger]; Pen.fillOval(r); } } }; w.refresh; w.front; ) // single point transform on arbitrary value ~inbuf = Buffer.loadCollection(s,0.5.dup); ~kmeans.predictPoint(~inbuf,{|x|x.postln;}); :: subsection:: Server Side Queries This is the equivalent of predictPoint, but wholly on the server FluidKMeans is accessed via its own synth, so we need to use a bus to communicate with it. The inBus receives a trigger to query, using data from inBuffer; a trigger is then send to outBus with the prediction in outBuffer code:: ( ~ib = Bus.control(s); // input bus ~ob = Bus.control(s); //output bus ~tempPoint = Buffer.alloc(s,1,2); ~inpPoint = Buffer.alloc(s,2); ~outPoint = Buffer.alloc(s,1); ) //We make two Synths. One, before FluidKMeans, generates a random point and sends //a trigger to query. The second, after FluidKMeans, gives us the predicted cluster //triggering upadtes from the outBus ( //Set properties on FluidKMeans: ~kmeans.inBus_(~ib).outBus_(~ob).inBuffer_(~inpPoint).outBuffer_(~outPoint); //pitching { var trig = Impulse.kr(5); var point = WhiteNoise.kr(1.dup); var copied; Poll.kr(trig, point, [\pointX,\pointY]); point.collect{ |p,i| BufWr.kr([p],~inpPoint,i)}; Out.kr(~ib.index,[trig]); }.play(~kmeans.synth,addAction:\addBefore); //catching { Poll.kr(In.kr(~ob),Latch.kr(BufRd.kr(1,~outPoint,0,interpolation:0),In.kr(~ob)),\cluster); }.play(~kmeans.synth,addAction:\addAfter); ) // to sonify the output, here are random values alternating quadrant, generated more quickly as the cursor moves rightwards ( //Set properties on FluidKMeans: ~kmeans.inBus_(~ib).outBus_(~ob).inBuffer_(~inpPoint).outBuffer_(~outPoint); //pitching { var trig = Impulse.kr(MouseX.kr(0,1).exprange(0.5,ControlRate.ir / 2)); var step = Stepper.kr(trig,max:3); var point = TRand.kr(-0.1, [0.1, 0.1], trig) + [step.mod(2).linlin(0,1,-0.6,0.6),step.div(2).linlin(0,1,-0.6,0.6)] ; point.collect{|p,i| BufWr.kr([p],~inpPoint,i)}; Out.kr(~ib.index,[trig]); T2A.ar(trig)*0.1; }.play(~kmeans.synth,addAction:\addBefore); //catching { SinOsc.ar((Latch.kr(BufRd.kr(1,~outPoint,0,interpolation:0),In.kr(~ob)) + 69).midicps,mul: 0.1); }.play(~kmeans.synth,addAction:\addAfter); ) ::