TITLE:: FluidMDS summary:: Dimensionality Reduction with Multidimensional Scaling categories:: Dimensionality Reduction, Data Processing related:: Classes/FluidMDS, Classes/FluidDataSet DESCRIPTION:: Multidimensional scaling of a link::Classes/FluidDataSet:: https://scikit-learn.org/stable/modules/manifold.html#multi-dimensional-scaling-mds CLASSMETHODS:: METHOD:: new Make a new instance ARGUMENT:: server The server on which to run this model METHOD:: euclidean Euclidean distance (default) METHOD:: sqeuclidean Squared Euclidean distance METHOD:: manhattan Manhattan distance METHOD:: max Minowski max METHOD:: min Minowski max METHOD:: kl Symmetric Kulback Leiber divergance (only makes sense with non-negative data) METHOD:: cosine Cosine distance INSTANCEMETHODS:: PRIVATE:: init METHOD:: fitTransform Fit the model to a link::Classes/FluidDataSet:: and write the new projected data to a destination FluidDataSet. ARGUMENT:: sourceDataSet Source data, or the DataSet name ARGUMENT:: destDataSet Destination data, or the DataSet name ARGUMENT:: numDimensions The number of dimensions to reduce to ARGUMENT:: distanceMetric The distance metric to use (integer, 0-6, see flags above) ARGUMENT:: action Run when done EXAMPLES:: code:: //Preliminaries: we want some audio, a couple of FluidDataSets, some Buffers, a FluidStandardize and a FluidMDS ( ~audiofile = File.realpath(FluidBufPitch.class.filenameSymbol).dirname +/+ "../AudioFiles/Tremblay-ASWINE-ScratchySynth-M.wav"; ~raw = FluidDataSet(s,\mds_help_12D); ~standardized = FluidDataSet(s,\mds_help_12Ds); ~reduced = FluidDataSet(s,\mds_help_2D); ~audio = Buffer.read(s,~audiofile); ~mfcc_feature = Buffer.new(s); ~stats = Buffer.alloc(s, 7, 12); ~standardizer = FluidStandardize(s); ~mds = FluidMDS(s); ) // Load audio and run an mfcc analysis, which gives us 13 points (we'll throw the 0th away) ( ~audio = Buffer.read(s,~audiofile); FluidBufMFCC.process(s,~audio, features: ~mfcc_feature); ) // Divide the time series in 100, and take the mean of each segment and add this as a point to // the 'raw' FluidDataSet ( { var trig = LocalIn.kr(1, 1); var buf = LocalBuf(12, 1); var count = PulseCount.kr(trig) - 1; var chunkLen = (~mfcc_feature.numFrames / 100).asInteger; var stats = FluidBufStats.kr( source: ~mfcc_feature, startFrame: count * chunkLen, startChan:1, numFrames: chunkLen, stats: ~stats, trig: trig ); var rd = BufRd.kr(12, ~stats, DC.kr(0), 0, 1); var bufWr, dsWr; 12.do{|i| bufWr = BufWr.kr(rd[i], buf, DC.kr(i)); }; dsWr = FluidDataSetWr.kr(\mds_help_12D, buf: buf, trig: Done.kr(stats)); LocalOut.kr( Done.kr(dsWr)); FreeSelf.kr(count - 99); }.play; ) //First standardize our DataSet, so that the MFCC dimensions are on comensurate scales //Then apply the MDS in-place on the standardized data to get 2 dimensions, using a Euclidean distance metric //Download the DataSet contents into an array for plotting ( ~reducedarray = Array.new(100); ~standardizer.fitTransform(~raw, ~standardized); ~mds.fitTransform(~standardized, ~reduced, 2, FluidMDS.euclidean, action:{ ~reduced.dump{|x| 100.do{|i| ~reducedarray.add(x["data"][i.asString]) }}}); ) //Visualise the 2D projection of our original 12D data ( d = ~reducedarray.flatten(1).unlace.deepCollect(1, { |x| x.normalize}); // d = [20.collect{1.0.rand}, 20.collect{1.0.rand}]; w = Window("scatter", Rect(128, 64, 200, 200)); w.drawFunc = { Pen.use { d[0].size.do{|i| var x = (d[0][i]*200); var y = (d[1][i]*200); var r = Rect(x,y,5,5); Pen.fillColor = Color.blue; Pen.fillOval(r); } } }; w.refresh; w.front; ) ::