a typo in most helpfiles (hopeSize is large at the moment)

nix
Pierre Alexandre Tremblay 7 years ago
parent 623341c50c
commit cfafc629ba

@ -91,7 +91,7 @@ ARGUMENT:: winSize
The window size. As NMF relies on spectral frames, we need to decide what precision we give it spectrally and temporally, in line with Gabor Uncertainty principles. http://www.subsurfwiki.org/wiki/Gabor_uncertainty
ARGUMENT:: hopSize
The window hope size. As NMF relies on spectral frames, we need to move the window forward. It can be any size but low overlap will create audible artefacts.
The window hop size. As NMF relies on spectral frames, we need to move the window forward. It can be any size but low overlap will create audible artefacts.
ARGUMENT:: fftSize
The inner FFT/IFFT size. It should be at least 4 samples long, at least the size of the window, and a power of 2. Making it larger allows an oversampling of the spectral precision.

@ -49,7 +49,7 @@ ARGUMENT:: winSize
The window size. As novelty estimation relies on spectral frames, we need to decide what precision we give it spectrally and temporally, in line with Gabor Uncertainty principles. http://www.subsurfwiki.org/wiki/Gabor_uncertainty
ARGUMENT:: hopSize
The window hope size. As novelty estimation relies on spectral frames, we need to move the window forward. It can be any size but low overlap will create audible artefacts.
The window hop size. As novelty estimation relies on spectral frames, we need to move the window forward. It can be any size but low overlap will create audible artefacts.
ARGUMENT:: fftSize
The inner FFT/IFFT size. It should be at least 4 samples long, at least the size of the window, and a power of 2. Making it larger allows an oversampling of the spectral precision.

@ -65,7 +65,7 @@ ARGUMENT:: winSize
The window size. As spectral differencing relies on spectral frames, we need to decide what precision we give it spectrally and temporally, in line with Gabor Uncertainty principles. http://www.subsurfwiki.org/wiki/Gabor_uncertainty
ARGUMENT:: hopSize
The window hope size. As spectral differencing relies on spectral frames, we need to move the window forward. It can be any size but low overlap will create audible artefacts. The -1 default value will default to half of winSize (overlap of 2).
The window hop size. As spectral differencing relies on spectral frames, we need to move the window forward. It can be any size but low overlap will create audible artefacts. The -1 default value will default to half of winSize (overlap of 2).
ARGUMENT:: fftSize
The inner FFT/IFFT size. It should be at least 4 samples long, at least the size of the window, and a power of 2. Making it larger allows an oversampling of the spectral precision. The -1 default value will default to windowSize.

@ -47,7 +47,7 @@ ARGUMENT:: winSize
The window size. As sinusoidal estimation relies on spectral frames, we need to decide what precision we give it spectrally and temporally, in line with Gabor Uncertainty principles. http://www.subsurfwiki.org/wiki/Gabor_uncertainty
ARGUMENT:: hopSize
The window hope size. As sinusoidal estimation relies on spectral frames, we need to move the window forward. It can be any size but low overlap will create audible artefacts.
The window hop size. As sinusoidal estimation relies on spectral frames, we need to move the window forward. It can be any size but low overlap will create audible artefacts.
ARGUMENT:: fftSize
The inner FFT/IFFT size. It should be at least 4 samples long, at least the size of the window, and a power of 2. Making it larger allows an oversampling of the spectral precision.
@ -84,7 +84,7 @@ c.plot(minval:0, maxval:400)
// plot with a different range to appreciate the confidence:
c.plot(minval:0, maxval:1)
// The values are interleaved [pitch,confidence] in the buffer as they are on 2 channels: to get to the right frame, divide the SR of the input by the hopesize, then multiply by 2 because of the channel interleaving
// The values are interleaved [pitch,confidence] in the buffer as they are on 2 channels: to get to the right frame, divide the SR of the input by the hopSize, then multiply by 2 because of the channel interleaving
// here we are querying from one frame before (the signal starts at 8192, which is frame 16 (8192/512), therefore starting the query at frame 15, which is index 30.
c.getn(30,10,{|x|x.postln})
@ -174,4 +174,4 @@ Routine({
})
}).play;
)
::
::

@ -61,7 +61,7 @@ ARGUMENT:: winSize
The window size. As sinusoidal estimation relies on spectral frames, we need to decide what precision we give it spectrally and temporally, in line with Gabor Uncertainty principles. http://www.subsurfwiki.org/wiki/Gabor_uncertainty
ARGUMENT:: hopSize
The window hope size. As sinusoidal estimation relies on spectral frames, we need to move the window forward. It can be any size but low overlap will create audible artefacts.
The window hop size. As sinusoidal estimation relies on spectral frames, we need to move the window forward. It can be any size but low overlap will create audible artefacts.
ARGUMENT:: fftSize
The inner FFT/IFFT size. It should be at least 4 samples long, at least the size of the window, and a power of 2. Making it larger allows an oversampling of the spectral precision.

@ -55,7 +55,7 @@ ARGUMENT:: winSize
The window size. As sinusoidal estimation relies on spectral frames, we need to decide what precision we give it spectrally and temporally, in line with Gabor Uncertainty principles. http://www.subsurfwiki.org/wiki/Gabor_uncertainty
ARGUMENT:: hopSize
The window hope size. As sinusoidal estimation relies on spectral frames, we need to move the window forward. It can be any size but low overlap will create audible artefacts.
The window hop size. As sinusoidal estimation relies on spectral frames, we need to move the window forward. It can be any size but low overlap will create audible artefacts.
ARGUMENT:: fftSize
The inner FFT/IFFT size. It should be at least 4 samples long, at least the size of the window, and a power of 2. Making it larger allows an oversampling of the spectral precision.

@ -70,7 +70,7 @@ ARGUMENT:: winSize
The window size. As sinusoidal estimation relies on spectral frames, we need to decide what precision we give it spectrally and temporally, in line with Gabor Uncertainty principles. http://www.subsurfwiki.org/wiki/Gabor_uncertainty
ARGUMENT:: hopSize
The window hope size. As sinusoidal estimation relies on spectral frames, we need to move the window forward. It can be any size but low overlap will create audible artefacts. The -1 default value will default to half of winSize (overlap of 2).
The window hop size. As sinusoidal estimation relies on spectral frames, we need to move the window forward. It can be any size but low overlap will create audible artefacts. The -1 default value will default to half of winSize (overlap of 2).
ARGUMENT:: fftSize
The inner FFT/IFFT size. It should be at least 4 samples long, at least the size of the window, and a power of 2. Making it larger allows an oversampling of the spectral precision. The -1 default value will default to windowSize.
@ -84,17 +84,14 @@ ARGUMENT::maxHarmFilterSize
ARGUMENT:: maxPercFilterSize
How large can the percussive filter be modulated to (percFilterSize), by allocating memory at instantiation time. This cannot be modulated.
RETURNS::
An array of three audio streams: [0] is the harmonic part extracted, [1] is the percussive part extracted, [2] is the rest. The latency between the input and the output is ((harmFilterSize - 1) * hopSize) + winSize) samples.
Discussion::
HPSS works by using median filters on the spectral magnitudes of a sound. It hinges on a simple modelling assumption that tonal components will tend to yield concentrations of energy across time, spread out in frequency, and percussive components will manifest as concentrations of energy across frequency, spread out in time. By using median filters across time and frequency respectively, we get initial esitmates of the tonal-ness / transient-ness of a point in time and frequency. These are then combined into 'masks' that are applied to the orginal spectral data in order to produce a separation.
The maskingMode parameter provides different approaches to combinging estimates and producing masks. Some settings (especially in modes 1 & 2) will provide better separation but with more artefacts. These can, in principle, be ameliorated by applying smoothing filters to the masks before transforming back to the time-domain (not yet implemented).
EXAMPLES::
CODE::

@ -38,7 +38,7 @@ ARGUMENT:: winSize
The number of samples that are analysed at a time. A lower number yields greater temporal resolution, at the expense of spectral resoultion, and vice-versa.
ARGUMENT:: hopSize
The window hope size. As NMF relies on spectral frames, we need to move the window forward. It can be any size but low overlap will create audible artefacts. The -1 default value will default to half of winSize (overlap of 2).
The window hop size. As NMF relies on spectral frames, we need to move the window forward. It can be any size but low overlap will create audible artefacts. The -1 default value will default to half of winSize (overlap of 2).
ARGUMENT:: fftSize
The FFT/IFFT size. It should be at least 4 samples long, at least the size of the window, and a power of 2. Making it larger allows an oversampling of the spectral precision. The -1 default value will default to windowSize.

@ -38,7 +38,7 @@ ARGUMENT:: winSize
The number of samples that are analysed at a time. A lower number yields greater temporal resolution, at the expense of spectral resoultion, and vice-versa.
ARGUMENT:: hopSize
The window hope size. As NMF relies on spectral frames, we need to move the window forward. It can be any size but low overlap will create audible artefacts. The -1 default value will default to half of winSize (overlap of 2).
The window hop size. As NMF relies on spectral frames, we need to move the window forward. It can be any size but low overlap will create audible artefacts. The -1 default value will default to half of winSize (overlap of 2).
ARGUMENT:: fftSize
The FFT/IFFT size. It should be at least 4 samples long, at least the size of the window, and a power of 2. Making it larger allows an oversampling of the spectral precision. The -1 default value will default to windowSize.

@ -48,7 +48,7 @@ ARGUMENT:: winSize
The window size. As sinusoidal estimation relies on spectral frames, we need to decide what precision we give it spectrally and temporally, in line with Gabor Uncertainty principles. http://www.subsurfwiki.org/wiki/Gabor_uncertainty
ARGUMENT:: hopSize
The window hope size. As sinusoidal estimation relies on spectral frames, we need to move the window forward. It can be any size but low overlap will create audible artefacts. The -1 default value will default to half of winSize (overlap of 2).
The window hop size. As sinusoidal estimation relies on spectral frames, we need to move the window forward. It can be any size but low overlap will create audible artefacts. The -1 default value will default to half of winSize (overlap of 2).
ARGUMENT:: fftSize
The inner FFT/IFFT size. It should be at least 4 samples long, at least the size of the window, and a power of 2. Making it larger allows an oversampling of the spectral precision. The -1 default value will default to windowSize.

@ -28,7 +28,7 @@ ARGUMENT:: winSize
The window size. As sinusoidal estimation relies on spectral frames, we need to decide what precision we give it spectrally and temporally, in line with Gabor Uncertainty principles. http://www.subsurfwiki.org/wiki/Gabor_uncertainty
ARGUMENT:: hopSize
The window hope size. As sinusoidal estimation relies on spectral frames, we need to move the window forward. It can be any size but low overlap will create audible artefacts. The -1 default value will default to half of winSize (overlap of 2).
The window hop size. As sinusoidal estimation relies on spectral frames, we need to move the window forward. It can be any size but low overlap will create audible artefacts. The -1 default value will default to half of winSize (overlap of 2).
ARGUMENT:: fftSize
The inner FFT/IFFT size. It should be at least 4 samples long, at least the size of the window, and a power of 2. Making it larger allows an oversampling of the spectral precision. The -1 default value will default to windowSize.

@ -40,7 +40,7 @@ ARGUMENT:: winSize
The window size. As sinusoidal estimation relies on spectral frames, we need to decide what precision we give it spectrally and temporally, in line with Gabor Uncertainty principles. http://www.subsurfwiki.org/wiki/Gabor_uncertainty
ARGUMENT:: hopSize
The window hope size. As sinusoidal estimation relies on spectral frames, we need to move the window forward. It can be any size but low overlap will create audible artefacts. The -1 default value will default to half of winSize (overlap of 2).
The window hop size. As sinusoidal estimation relies on spectral frames, we need to move the window forward. It can be any size but low overlap will create audible artefacts. The -1 default value will default to half of winSize (overlap of 2).
ARGUMENT:: fftSize
The inner FFT/IFFT size. It should be at least 4 samples long, at least the size of the window, and a power of 2. Making it larger allows an oversampling of the spectral precision. The -1 default value will default to windowSize.

@ -36,7 +36,7 @@ ARGUMENT:: winSize
The window size. As sinusoidal estimation relies on spectral frames, we need to decide what precision we give it spectrally and temporally, in line with Gabor Uncertainty principles. http://www.subsurfwiki.org/wiki/Gabor_uncertainty
ARGUMENT:: hopSize
The window hope size. As sinusoidal estimation relies on spectral frames, we need to move the window forward. It can be any size but low overlap will create audible artefacts. The -1 default value will default to half of winSize (overlap of 2).
The window hop size. As sinusoidal estimation relies on spectral frames, we need to move the window forward. It can be any size but low overlap will create audible artefacts. The -1 default value will default to half of winSize (overlap of 2).
ARGUMENT:: fftSize
The inner FFT/IFFT size. It should be at least 4 samples long, at least the size of the window, and a power of 2. Making it larger allows an oversampling of the spectral precision. The -1 default value will default to windowSize.

Loading…
Cancel
Save