RT version of MLP objects

nix
Gerard 6 years ago
parent 744811d288
commit bcb4456f79

@ -1,11 +1,11 @@
FluidBaseMLP : FluidDataClient {
FluidMLPRegressor : FluidRTDataClient {
const <identity = 0;
const <sigmoid = 1;
const <relu = 2;
const <tanh = 3;
*new {|server, hidden = #[3,3] , activation = 0, maxIter = 100, learnRate = 0.0001, momentum = 0.9, batchSize = 50, validation = 0.2|
*new {|server, hidden = #[3,3] , activation = 0, outputLayer = 0, maxIter = 100, learnRate = 0.0001, momentum = 0.9, batchSize = 50, validation = 0.2|
var hiddenCtrlLabels;
hidden = [hidden.size]++hidden;
@ -15,6 +15,7 @@ FluidBaseMLP : FluidDataClient {
[hiddenCtrlLabels,hidden].lace ++
[
\activation,activation,
\outputLayer, outputLayer,
\maxIter, maxIter,
\learnRate,learnRate,
\momentum, momentum,
@ -27,13 +28,6 @@ FluidBaseMLP : FluidDataClient {
this.prSendMsg(\clear,action:action);
}
}
FluidMLPRegressor : FluidBaseMLP {
*new {|server, hidden = #[3,3] , activation = 0, maxIter = 100, learnRate = 0.0001, momentum = 0.9, batchSize = 50, validation = 0.2|
^super.new(server,hidden,activation, maxIter,learnRate, momentum, batchSize,validation)
}
fit{|sourceDataSet, targetDataSet, action|
this.prSendMsg(\fit,
[sourceDataSet.asSymbol, targetDataSet.asSymbol],
@ -41,23 +35,49 @@ FluidMLPRegressor : FluidBaseMLP {
);
}
predict{ |sourceDataSet, targetDataSet, layer, action|
predict{ |sourceDataSet, targetDataSet, action|
this.prSendMsg(\predict,
[sourceDataSet.asSymbol, targetDataSet.asSymbol,layer],
[sourceDataSet.asSymbol, targetDataSet.asSymbol],
action);
}
predictPoint { |sourceBuffer, targetBuffer, layer action|
predictPoint { |sourceBuffer, targetBuffer, action|
this.prSendMsg(\predictPoint,
[sourceBuffer.asUGenInput, targetBuffer.asUGenInput, layer], action);
[sourceBuffer.asUGenInput, targetBuffer.asUGenInput], action);
}
}
FluidMLPClassifier : FluidBaseMLP {
FluidMLPClassifier : FluidRTDataClient {
const <identity = 0;
const <sigmoid = 1;
const <relu = 2;
const <tanh = 3;
*new {|server, hidden = #[3,3] , activation = 0, maxIter = 100, learnRate = 0.0001, momentum = 0.9, batchSize = 50, validation = 0.2|
^super.new(server,hidden,activation, maxIter,learnRate, momentum, batchSize,validation)
var hiddenCtrlLabels;
hidden = [hidden.size]++hidden;
hiddenCtrlLabels = hidden.collect{|x,i| \hidden++i};
^super.new1(server,
[hiddenCtrlLabels,hidden].lace ++
[
\activation,activation,
\maxIter, maxIter,
\learnRate,learnRate,
\momentum, momentum,
\batchsize,batchSize,
\validation,validation,
])
}
clear{ |action|
this.prSendMsg(\clear,action:action);
}
fit{|sourceDataSet, targetLabelSet, action|
this.prSendMsg(\fit,
[sourceDataSet.asSymbol, targetLabelSet.asSymbol],
@ -65,14 +85,14 @@ FluidMLPClassifier : FluidBaseMLP {
);
}
predict{ |sourceDataSet, targetLabelSet, action|
predict{ |sourceDataSet, targetDataSet, action|
this.prSendMsg(\predict,
[sourceDataSet.asSymbol, targetLabelSet.asSymbol],
[sourceDataSet.asSymbol, targetDataSet.asSymbol],
action);
}
predictPoint { |sourceBuffer, action|
this.prSendMsg(\predictPoint,
[sourceBuffer.asUGenInput], action,string(FluidMessageResponse,_,_));
[sourceBuffer.asUGenInput], action, string(FluidMessageResponse,_,_));
}
}

@ -38,6 +38,6 @@ PluginLoad(FluidSTFTUGen)
makeSCWrapper<RTAudioTransportClient>("FluidAudioTransport",ft);
makeSCWrapper<NRTThreadedAudioTransportClient>("FluidBufAudioTransport",ft);
makeSCWrapper<NRTThreadedDataSetWriter>("FluidDataSetWr", ft);
makeSCWrapper<NRTThreadedMLPRegressorClient>("FluidMLPRegressor",ft);
makeSCWrapper<NRTThreadedMLPClassifierClient>("FluidMLPClassifier",ft);
makeSCWrapper<RTMLPRegressorClient>("FluidMLPRegressor",ft);
makeSCWrapper<RTMLPClassifierClient>("FluidMLPClassifier",ft);
}

Loading…
Cancel
Save