FluidNormalize: review example

nix
Gerard 6 years ago
parent 26b8fcdbe1
commit b2338ed9d9

@ -68,66 +68,59 @@ s.boot;
~audiofile = File.realpath(FluidBufPitch.class.filenameSymbol).dirname +/+ "../AudioFiles/Tremblay-ASWINE-ScratchySynth-M.wav";
~raw = FluidDataSet(s,\norm_help_raw);
~norm = FluidDataSet(s,\norm_help_normd);
~audio = Buffer.read(s,~audiofile);
~pitch_feature = Buffer.new(s);
~stats = Buffer.new(s);
~datapoint = Buffer.alloc(s,2);
~stats = Buffer.alloc(s, 7, 2);
~normalizer = FluidNormalize(s);
)
// Do a pitch analysis on the audio, which gives us pitch and pitch confidence (so a 2D datum)
// Load audio and run a pitch analysis, which gives us pitch and pitch confidence (so a 2D datum)
(
~audio = Buffer.read(s,~audiofile);
FluidBufPitch.process(s,~audio, features: ~pitch_feature);
)
// Divide the time series in to 10, and take the mean of each segment and add this as a point to
// the 'raw' FluidDataSet
(
~raw.clear;
~norm.clear;
FluidBufPitch.process(s,~audio,features:~pitch_feature,action:{
"Pitch analysis.complete. Doing stats".postln;
fork{
var chunkLen = (~pitch_feature.numFrames / 10).asInteger;
10.do{ |i|
s.sync; FluidBufStats.process(s,~pitch_feature,startFrame:i*chunkLen,numFrames:chunkLen,stats:~stats, action:{
~stats.loadToFloatArray(action:{ |statsdata|
[statsdata[0],statsdata[1]].postln;
~datapoint.setn(0,[statsdata[0],statsdata[1]]);
s.sync;
("Adding point" ++ i).postln;
~raw.addPoint(i,~datapoint);
})
});
if(i == 9) {"Analysis done, dataset ready".postln}
}
}
});
{
var trig = LocalIn.kr(1, 1);
var buf = LocalBuf(2, 1);
var count = PulseCount.kr(trig) - 1;
var chunkLen = (~pitch_feature.numFrames / 10).asInteger;
var stats = FluidBufStats.kr(
source: ~pitch_feature, startFrame: count * chunkLen,
numFrames: chunkLen, stats: ~stats, trig: trig
);
var rd = BufRd.kr(2, ~stats, DC.kr(0), 0, 1);// pick only mean pitch and confidence
var wr1 = BufWr.kr(rd[0], buf, DC.kr(0));
var wr2 = BufWr.kr(rd[1], buf, DC.kr(1));
var dsWr = FluidDataSetWr.kr(\norm_help_raw, buf: buf, trig: Done.kr(stats));
LocalOut.kr( Done.kr(dsWr));
FreeSelf.kr(count - 9);
}.play;
)
//Fit the FluidNormalizer to the raw data, and then apply the scaling out of place into
//our second FluidDataSet, so we can compare.
//Download the dataset contents into arrays for plotting
// Normalize and load to language-side array
(
~normalizer.fit(~raw);
~normalizer.transform(~raw,~norm);
~rawarray = Array.new(10);
~normedarray= Array.new(10);
fork{
10.do{|i|
~raw.getPoint(i,~datapoint,{
~datapoint.loadToFloatArray(action:{|a| ~rawarray.add(Array.newFrom(a))})
});
s.sync;
~norm.getPoint(i,~datapoint,{
~datapoint.loadToFloatArray(action:{|a| ~normedarray.add(Array.newFrom(a))})
});
s.sync;
if(i==9){"Data downloaded".postln};
}
}
~normalizer.fitTransform(~raw,~norm, {
~raw.dump{|x| 10.do{|i|
~rawarray.add(x["data"][i.asString])
}};
~norm.dump{|x| 10.do{|i|
~normedarray.add(x["data"][i.asString])
}};
});
)
//Plot side by side. Before normalization the two dimensions have radically different scales
//which can be unhelpful in many cases
(
~rawarray.flatten(1).unlace.plot("Unnormalized",Rect(0,0,400,400),minval:0,maxval:[5000,1]).plotMode=\bars;
~plot2 = ~normedarray.flatten(1).unlace.plot("Normalized",Rect(410,0,400,400)).plotMode=\bars;
)
::

Loading…
Cancel
Save