Abstract out MLPRegressor constructor in prep for classifier

nix
Owen Green 6 years ago
parent 67e8d57812
commit 9c673ae16c

@ -1,11 +1,5 @@
FluidMLPRegressor : FluidDataClient {
const <identity = 0;
const <sigmoid = 1;
const <relu = 2;
const <tanh = 3;
*new {|server, hidden = #[3,3] , activation = 0, maxIter = 100, learnRate = 0.0001, momentum = 0.9, batchSize = 50, validation = 0.2|
FluidBaseMLP : FluidDataClient {
*new {|server, hidden = #[3,3] , activation = 0, maxIter = 100, learnRate = 0.0001, momentum = 0.9, batchSize = 50, validation = 0.2|
var hiddenCtrlLabels;
hidden = [hidden.size]++hidden;
@ -22,6 +16,18 @@ FluidMLPRegressor : FluidDataClient {
\validation,validation,
])
}
}
FluidMLPRegressor : FluidBaseMLP {
const <identity = 0;
const <sigmoid = 1;
const <relu = 2;
const <tanh = 3;
*new {|server, hidden = #[3,3] , activation = 0, maxIter = 100, learnRate = 0.0001, momentum = 0.9, batchSize = 50, validation = 0.2|
^super.new(server,hidden,activation, maxIter,learnRate, momentum, batchSize,validation)
}
fit{|sourceDataSet, targetDataSet, action|
this.prSendMsg(\fit,

Loading…
Cancel
Save