diff --git a/release-packaging/Examples/dataset/super-simple-classifier-example.scd b/release-packaging/Examples/dataset/super-simple-classifier-example.scd index 8c58f29..855035f 100644 --- a/release-packaging/Examples/dataset/super-simple-classifier-example.scd +++ b/release-packaging/Examples/dataset/super-simple-classifier-example.scd @@ -1,6 +1,6 @@ ( -~simpleInput = FluidDataSet(s,\simpleInput,2); -~simpleOutput = FluidLabelSet(s,\simpleOutput,2); +~simpleInput = FluidDataSet(s,\simpleInput); +~simpleOutput = FluidLabelSet(s,\simpleOutput); b = Buffer.alloc(s,2); ~knn = FluidKNNClassifier(s); k = 3 @@ -23,7 +23,7 @@ v.mouseDownAction = {|view, x, y|myx=x;myy=y;w.refresh; Routine{ b.setn(0,[myx,myy]); s.sync; - ~knn.predictPoint(b, k, {|x|x.postln;}); + ~knn.predictPoint(b, k, action: {|x|x.postln;}); }.play;}; //custom redraw function diff --git a/release-packaging/Examples/dataset/super-simple-normalization-standardization-example.scd b/release-packaging/Examples/dataset/super-simple-normalization-standardization-example.scd index 62193a4..8604714 100644 --- a/release-packaging/Examples/dataset/super-simple-normalization-standardization-example.scd +++ b/release-packaging/Examples/dataset/super-simple-normalization-standardization-example.scd @@ -39,7 +39,7 @@ ~normed_dataset = FluidDataSet(s,\normed,~nb_of_dim); // normalize the full dataset -~normalize.normalize(~dataset,~normed_dataset,{"done".postln;}); +~normalize.transform(~dataset,~normed_dataset,{"done".postln;}); // look at a point to see that it has points in it ~normed_dataset.getPoint("point-0",~query_buf,{~query_buf.getn(0,~nb_of_dim,{|x|x.postln;});}); @@ -54,7 +54,7 @@ // standardize the full dataset ~standardized_dataset = FluidDataSet(s,\standardized,~nb_of_dim); -~standardize.standardize(~dataset,~standardized_dataset,{"done".postln;}); +~standardize.transform(~dataset,~standardized_dataset,{"done".postln;}); // look at a point to see that it has points in it ~standardized_dataset.getPoint("point-0",~query_buf,{~query_buf.getn(0,~nb_of_dim,{|x|x.postln;});}); @@ -79,7 +79,7 @@ // normalise that point (~query_buf) to be at the right scale ~normbuf = Buffer.alloc(s,~nb_of_dim); -~normalize.normalizePoint(~query_buf,~normbuf); +~normalize.transformPoint(~query_buf,~normbuf); ~normbuf.getn(0,~nb_of_dim,{arg vec;vec.postln;}); // make a tree of the normalized database and query with the normalize buffer @@ -91,7 +91,7 @@ // standardize that same point (~query_buf) to be at the right scale ~stdbuf = Buffer.alloc(s,~nb_of_dim); -~standardize.standardizePoint(~query_buf,~stdbuf); +~standardize.transformPoint(~query_buf,~stdbuf); ~stdbuf.getn(0,~nb_of_dim,{arg vec;vec.postln;}); // make a tree of the standardized database and query with the normalize buffer @@ -107,8 +107,8 @@ ~query_buf.fill(0,~nb_of_dim,50); // normalize and standardize the query buffer. Note that we do not need to fit since we have not added a point to our reference dataset -~normalize.normalizePoint(~query_buf,~normbuf); -~standardize.standardizePoint(~query_buf,~stdbuf); +~normalize.transformPoint(~query_buf,~normbuf); +~standardize.transformPoint(~query_buf,~stdbuf); //query the single nearest neighbourg via 3 different data scaling. Depending on the random source at the begining, you will get small to large differences between the 3 answers! ~tree.kNearest(~query_buf,1, {|x| ("Original:" + x).post;~tree.kNearestDist(~query_buf,1, {|x| (" with a distance of " + x).postln});}); diff --git a/release-packaging/HelpSource/Classes/FluidKNNClassifier.schelp b/release-packaging/HelpSource/Classes/FluidKNNClassifier.schelp index eac0ecb..d76b446 100644 --- a/release-packaging/HelpSource/Classes/FluidKNNClassifier.schelp +++ b/release-packaging/HelpSource/Classes/FluidKNNClassifier.schelp @@ -105,9 +105,6 @@ fork{ } ) -//Dims of kmeans should match dataset -~kmeans.cols - //Return labels of clustered points ( ~assignments = Array.new(~testpoints.size);