diff --git a/release-packaging/Examples/dataset/1-learning examples/8c-mlp-regressor-as-dim-redux.scd b/release-packaging/Examples/dataset/1-learning examples/8c-mlp-regressor-as-dim-redux.scd index 10e8ff3..3663601 100644 --- a/release-packaging/Examples/dataset/1-learning examples/8c-mlp-regressor-as-dim-redux.scd +++ b/release-packaging/Examples/dataset/1-learning examples/8c-mlp-regressor-as-dim-redux.scd @@ -74,8 +74,6 @@ FluidBufMelBands.process(s,~audio, features: ~melfeatures,action: {\done.postln; //prepare the normalizers and the neural net for inverse query ( -~normalView.invert = 1; -~normalizer.invert = 1; ~mlp.tapIn = 2; ~mlp.tapOut = -1; ) @@ -114,9 +112,9 @@ v.mouseMoveAction = {|view, x, y| ~kdtree.kNearest(~queryPoint, action: {|nearest| //retrieve the nearest point ~norm.getPoint(nearest, ~dpN, action: { //get the normalised 40d ~raw.getPoint(nearest, ~datapoint, action: { // get the original 40d - ~normalView.transformPoint(~queryPoint, ~dQueryPoint, action: { //denormalise the 2d coordinate to get the right range of values for the MLP + ~normalView.inverseTransformPoint(~queryPoint, ~dQueryPoint, action: { //denormalise the 2d coordinate to get the right range of values for the MLP ~mlp.predictPoint(~dQueryPoint, ~dpMLPn, action: { //predict from the middle (2d) to the normalised output (40d) - ~normalizer.transformPoint(~dpMLPn, ~dpMLP, action: { //denormalised the 40d + ~normalizer.inverseTransformPoint(~dpMLPn, ~dpMLP, action: { //denormalised the 40d ~datapoint.getn(0,40,{|x|~arrayRawN = x; //retrieve the nearest ~dpN.getn(0,40,{|x|~arrayRawNn = x; // retrieve the normalised nearest ~dpMLPn.getn(0,40,{|x|~arrayMLPn = x; //retrieve the predicted normalised 40d @@ -158,4 +156,4 @@ w.drawFunc = { }; w.refresh; w.front; -) +) \ No newline at end of file diff --git a/test/8c-mlp-regressor-as-dim-redux.scd b/test/8c-mlp-regressor-as-dim-redux.scd index 4d9ee1f..3663601 100644 --- a/test/8c-mlp-regressor-as-dim-redux.scd +++ b/test/8c-mlp-regressor-as-dim-redux.scd @@ -74,8 +74,6 @@ FluidBufMelBands.process(s,~audio, features: ~melfeatures,action: {\done.postln; //prepare the normalizers and the neural net for inverse query ( -~normalView.invert = 1; -~normalizer.invert = 1; ~mlp.tapIn = 2; ~mlp.tapOut = -1; ) @@ -114,9 +112,9 @@ v.mouseMoveAction = {|view, x, y| ~kdtree.kNearest(~queryPoint, action: {|nearest| //retrieve the nearest point ~norm.getPoint(nearest, ~dpN, action: { //get the normalised 40d ~raw.getPoint(nearest, ~datapoint, action: { // get the original 40d - ~normalView.transformPoint(~queryPoint, ~dQueryPoint, action: { //denormalise the 2d coordinate to get the right range of values for the MLP + ~normalView.inverseTransformPoint(~queryPoint, ~dQueryPoint, action: { //denormalise the 2d coordinate to get the right range of values for the MLP ~mlp.predictPoint(~dQueryPoint, ~dpMLPn, action: { //predict from the middle (2d) to the normalised output (40d) - ~normalizer.transformPoint(~dpMLPn, ~dpMLP, action: { //denormalised the 40d + ~normalizer.inverseTransformPoint(~dpMLPn, ~dpMLP, action: { //denormalised the 40d ~datapoint.getn(0,40,{|x|~arrayRawN = x; //retrieve the nearest ~dpN.getn(0,40,{|x|~arrayRawNn = x; // retrieve the normalised nearest ~dpMLPn.getn(0,40,{|x|~arrayMLPn = x; //retrieve the predicted normalised 40d