b = Buffer.read(s,File.realpath(FluidBufHPSS.class.filenameSymbol).dirname.withTrailingSlash ++ "../AudioFiles/Tremblay-SA-UprightPianoPedalWide.wav");
c = Buffer.read(s,File.realpath(FluidBufHPSS.class.filenameSymbol).dirname.withTrailingSlash ++ "../AudioFiles/Tremblay-AaS-AcousticStrums-M.wav");
)
// composite one on left one on right as test signals
// So in the second settings (filterSize = 4), we smooth the novelty line a little, which allows us to catch small differences that are not jittery. It also corrects the ending cutting by the same trick: the averaging of the sharp pick is sliding up, crossing the threshold slightly earlier.
// If we smooth too much, like the third settings (filterSize = 8), we start to loose precision. Have fun with different values of theshold then will allow you to find the perfect segment for your signal.
b = Buffer.read(s,File.realpath(FluidBufSines.class.filenameSymbol).dirname.withTrailingSlash ++ "../AudioFiles/Tremblay-SA-UprightPianoPedalWide.wav");
c = Buffer.read(s,File.realpath(FluidBufSines.class.filenameSymbol).dirname.withTrailingSlash ++ "../AudioFiles/Tremblay-AaS-AcousticStrums-M.wav");
)
// composite one on left one on right as test signals
b = Buffer.read(s,File.realpath(FluidBufTransients.class.filenameSymbol).dirname.withTrailingSlash ++ "../AudioFiles/Tremblay-AaS-SynthTwoVoices-M.wav");
c = Buffer.read(s,File.realpath(FluidBufTransients.class.filenameSymbol).dirname.withTrailingSlash ++ "../AudioFiles/Tremblay-AaS-AcousticStrums-M.wav");
)
// composite one on left one on right as test signals