diff --git a/release-packaging/ignore/Examples/dataset/super-simple-1D-example.scd b/release-packaging/ignore/Examples/dataset/super-simple-1D-example.scd new file mode 100644 index 0000000..0d61ff3 --- /dev/null +++ b/release-packaging/ignore/Examples/dataset/super-simple-1D-example.scd @@ -0,0 +1,58 @@ +s.reboot +~ds = FluidDataSet.new(s,\simple1data,1) +~point = Buffer.alloc(s,1,1) +( +Routine{ + 10.do{|i| + ~point.set(0,i); + s.sync; + ~ds.addPoint(i.asString,~point,{("addPoint"+i).postln}) + } +}.play +) + +/*** KDTREE ***/ +~tree = FluidKDTree.new(s) +~tree.index(~ds,action:{"Done indexing".postln}) + +k = 5; //play with this +( +Routine{ + 10.do{|i| + ~point.set(0,i); + s.sync; + ("Neighbours for point" + i).postln; + ~tree.kNearest(~point, k, {|x| ("Labels:" + x).postln}) + } +}.play +) + +/*** KMEANS ***/ + +~kmeans = FluidKMeans.new(s) +~nClusters = 4; //play with this +~kmeans.fit(~ds,~nClusters,100,action:{"Done fitting".postln}) +( +Routine{ + 10.do{|i| + ~point.set(0,i * 10); + s.sync; + ~kmeans.predictPoint(~point,{|x| ("Predicted Cluster for point" + (i * 10) ++ ":" + x).postln}) + } +}.play +) + +~labels = FluidLabelSet(s,\simple1label); + +~kmeans.predict(~ds,~labels, {|x| ("Size of each cluster" + x[0]).postln}) +( +Routine{ + var n; + ~labels.size({|x| n = x[0][0]}); + n.asInt.do{|i| + ~labels.getLabel(i.asString,action: {|l|("Label for" + i ++ ":" + l).postln}); + } +}.play +) + +