updated helpfile for MLP regressor

nix
Pierre Alexandre Tremblay 6 years ago
parent d862f29fc5
commit 2c62ffab4f

@ -20,10 +20,13 @@ An link::Classes/Array:: that gives the sizes of any hidden layers in the networ
ARGUMENT:: activation
The activation function to use for the hidden layer units. Beware of the permitted ranges of each: relu (0->inf), sigmoid (0->1), tanh (-1,1).
ARGUMENT:: finalActivation
ARGUMENT:: outputActivation
The activation function to use for the final layer units. Beware of the permitted ranges of each: relu (0->inf), sigmoid (0->1), tanh (-1,1).
ARGUMENT:: outputLayer
ARGUMENT:: inputTap
The layer whose input is used to predict and predictPoint. It is 0 counting, where the default of 0 is the input layer, and 1 would be the first hidden layer, and so on.
ARGUMENT:: outputTap
The layer whose output to return. It is negative 0 counting, where the default of 0 is the output layer, and 1 would be the last hidden layer, and so on.
ARGUMENT:: maxIter
@ -103,7 +106,7 @@ code::
~test = FluidDataSet(s,\mlp_regressor_dest);
~output = FluidDataSet(s,\mlp_regress_out);
~tmpbuf = Buffer.alloc(s,1);
~regressor = FluidMLPRegressor(s,[2], FluidMLPRegressor.tanh, FluidMLPRegressor.tanh, 0, 1000,0.1,0.1,1,0);
~regressor = FluidMLPRegressor(s,[2], FluidMLPRegressor.tanh, FluidMLPRegressor.tanh, 0, 0, 1000,0.1,0.1,1,0);
)
//Make source, target and test data

Loading…
Cancel
Save