The Grid helpfile draft, with loads of questions for both, but with fun examples
parent
aaec227f37
commit
213576bfc9
@ -0,0 +1,201 @@
|
||||
TITLE:: FluidGrid
|
||||
summary:: Constrain a 2D DataSet into a Grid.
|
||||
categories:: Libraries>FluidCorpusManipulation
|
||||
related:: Classes/FluidMDS, Classes/FluidPCA, Classes/FluidDataSet
|
||||
|
||||
DESCRIPTION::
|
||||
|
||||
Hello. I put stuff in a 2-dimension link::Classes/FluidDataSet:: in the most even grid possible by minimising the distance I need to move each item around, using some clever algorithms. The grid space can be oversampled to allow for a sparser representation. The resulting grid shape can be constraint in one axis.
|
||||
|
||||
Please refer to a webpage and an article for more information on the algorithm.
|
||||
|
||||
CLASSMETHODS::
|
||||
|
||||
METHOD:: new
|
||||
Make a new instance
|
||||
|
||||
ARGUMENT:: server
|
||||
The server on which to run this model
|
||||
|
||||
ARGUMENT:: oversample
|
||||
A factor to oversample the destination grid. The default is 1, so the most compact grid possible will be yield. Factors of 2 or more will allow a larger destination grid, which will respect the original shape a little more, but will therefore be sparser.
|
||||
|
||||
ARGUMENT:: extent
|
||||
The size to which the selected axis will be constraint to. The default is 0, which turns the constraints off.
|
||||
|
||||
ARGUMENT:: axis
|
||||
The axis on which the constraint size is applied to. The default (0) is horizontal, and (1) is vertical.
|
||||
|
||||
INSTANCEMETHODS::
|
||||
|
||||
PRIVATE:: init
|
||||
|
||||
METHOD:: fitTransform
|
||||
Fit the model to a link::Classes/FluidDataSet:: and write the new projected data to a destination FluidDataSet.
|
||||
ARGUMENT:: sourceDataSet
|
||||
Source data, or the DataSet name
|
||||
ARGUMENT:: destDataSet
|
||||
Destination data, or the DataSet name
|
||||
ARGUMENT:: action
|
||||
Run when done
|
||||
|
||||
EXAMPLES::
|
||||
|
||||
STRONG::A didactic example::
|
||||
|
||||
code::
|
||||
|
||||
/// make a simple grid of numbers
|
||||
~simple = Dictionary.newFrom(36.collect{|i|[i.asSymbol, [i.mod(9), i.div(9)]]}.flatten(1));
|
||||
|
||||
//look at it
|
||||
(
|
||||
w = Window("the source", Rect(128, 64, 230, 100));
|
||||
w.drawFunc = {
|
||||
Pen.use {
|
||||
~simple.keysValuesDo{|key, val|
|
||||
Pen.stringCenteredIn(key, Rect((val[0] * 25), (val[1] * 25), 25, 25), Font( "Helvetica", 12 ), Color.black)
|
||||
}
|
||||
}
|
||||
};
|
||||
w.refresh;
|
||||
w.front;
|
||||
)
|
||||
|
||||
|
||||
//load it in a dataset
|
||||
~raw = FluidDataSet(s);
|
||||
~raw.load(Dictionary.newFrom([\cols, 2, \data, ~simple]));
|
||||
|
||||
// make a grid out of it
|
||||
~grid = FluidGrid(s);
|
||||
~gridified = FluidDataSet(s);
|
||||
~grid.fitTransform(~raw, ~gridified, action:{~gridified.dump{|x|~gridifiedDict = x["data"];\gridded.postln;}})
|
||||
|
||||
// watch the grid
|
||||
(
|
||||
w = Window("a perspective", Rect(358, 64, 350, 230));
|
||||
w.drawFunc = {
|
||||
Pen.use {
|
||||
~gridifiedDict.keysValuesDo{|key, val|
|
||||
Pen.stringCenteredIn(key, Rect((val[0] * 25), (val[1] * 25), 25, 25), Font( "Helvetica", 12 ), Color.black)
|
||||
}
|
||||
}
|
||||
};
|
||||
w.refresh;
|
||||
w.front;
|
||||
)
|
||||
|
||||
// change the constraints and draw again
|
||||
(
|
||||
~grid.axis_(0).extent_(4).fitTransform(~raw, ~gridified, action:{
|
||||
~gridified.dump{|x|
|
||||
~gridifiedDict = x["data"];\gridded.postln;
|
||||
{w.refresh;}.defer;
|
||||
}})
|
||||
)
|
||||
|
||||
// here we constrain in the other dimension
|
||||
(
|
||||
~grid.axis_(1).extent_(3).fitTransform(~raw, ~gridified, action:{
|
||||
~gridified.dump{|x|
|
||||
~gridifiedDict = x["data"];\gridded.postln;
|
||||
{w.refresh;}.defer;
|
||||
}})
|
||||
)
|
||||
|
||||
//oversampling yields the shape...ish!
|
||||
(
|
||||
~grid.oversample_(2).extent_(0).fitTransform(~raw, ~gridified, action:{
|
||||
~gridified.dump{|x|
|
||||
~gridifiedDict = x["data"];\gridded.postln;
|
||||
{w.refresh;}.defer;
|
||||
}})
|
||||
)
|
||||
::
|
||||
|
||||
STRONG::A more colourful example::
|
||||
|
||||
code::
|
||||
|
||||
// make all dependencies
|
||||
(
|
||||
~raw = FluidDataSet(s);
|
||||
~standardized = FluidDataSet(s);
|
||||
~reduced = FluidDataSet(s);
|
||||
~normalized = FluidDataSet(s);
|
||||
~standardizer = FluidStandardize(s);
|
||||
~normalizer = FluidNormalize(s, 0.05, 0.95);
|
||||
~umap = FluidUMAP(s).numDimensions_(2).numNeighbours_(5).minDist_(0.2).iterations_(50).learnRate_(0.2);
|
||||
~grid = FluidGrid(s);
|
||||
~gridified = FluidDataSet(s);
|
||||
)
|
||||
|
||||
// build a dataset of 400 points in 3D (colour in RGB)
|
||||
~colours = Dictionary.newFrom(400.collect{|i|[("entry"++i).asSymbol, 3.collect{1.0.rand}]}.flatten(1));
|
||||
~raw.load(Dictionary.newFrom([\cols, 3, \data, ~colours]));
|
||||
|
||||
//First standardize our DataSet, then apply the UMAP to get 2 dimensions, then normalise these 2 for drawing in the full window size
|
||||
(
|
||||
~standardizer.fitTransform(~raw,~standardized,action:{"Standardized".postln});
|
||||
~umap.fitTransform(~standardized,~reduced,action:{"Finished UMAP".postln});
|
||||
~normalizer.fitTransform(~reduced,~normalized,action:{"Normalized Output".postln});
|
||||
)
|
||||
//we recover the reduced dataset
|
||||
~normalized.dump{|x| ~normalizedDict = x["data"]};
|
||||
|
||||
//Visualise the 2D projection of our original 4D data
|
||||
(
|
||||
w = Window("a perspective", Rect(128, 64, 200, 200));
|
||||
w.drawFunc = {
|
||||
Pen.use {
|
||||
~normalizedDict.keysValuesDo{|key, val|
|
||||
Pen.fillColor = Color.new(~colours[key.asSymbol][0], ~colours[key.asSymbol][1],~colours[key.asSymbol][2]);
|
||||
Pen.fillOval(Rect((val[0] * 200), (val[1] * 200), 5, 5));
|
||||
~colours[key.asSymbol].flat;
|
||||
}
|
||||
}
|
||||
};
|
||||
w.refresh;
|
||||
w.front;
|
||||
)
|
||||
|
||||
//Force the UMAP-reduced dataset into a grid, normalise for viewing then print in another window
|
||||
(
|
||||
~grid.fitTransform(~reduced,~gridified,action:{"Gridded Output".postln;
|
||||
~normalizer.fitTransform(~gridified,~normalized,action:{"Normalized Output".postln;
|
||||
~normalized.dump{|x|
|
||||
~normalizedDict = x["data"];
|
||||
{
|
||||
y = Window("a grid", Rect(328, 64, 200, 200));
|
||||
y.drawFunc = {
|
||||
Pen.use {
|
||||
~normalizedDict.keysValuesDo{|key, val|
|
||||
Pen.fillColor = Color.new(~colours[key.asSymbol][0], ~colours[key.asSymbol][1],~colours[key.asSymbol][2]);
|
||||
Pen.fillOval(Rect((val[0] * 200), (val[1] * 200), 5, 5));
|
||||
~colours[key.asSymbol].flat;
|
||||
}
|
||||
}
|
||||
};
|
||||
y.refresh;
|
||||
y.front;
|
||||
}.defer;
|
||||
};
|
||||
});
|
||||
});
|
||||
)
|
||||
|
||||
// This looks ok, but let's improve it with oversampling
|
||||
(
|
||||
~grid.oversample_(3).fitTransform(~reduced,~gridified,action:{"Gridded Output".postln;
|
||||
~normalizer.fitTransform(~gridified,~normalized,action:{"Normalized Output".postln;
|
||||
~normalized.dump{|x|
|
||||
~normalizedDict = x["data"];
|
||||
{
|
||||
y.refresh;
|
||||
}.defer;
|
||||
};
|
||||
});
|
||||
});
|
||||
)
|
||||
::
|
||||
Loading…
Reference in New Issue