diff --git a/release-packaging/Examples/dataset/MLP-AE-dataredux.scd b/release-packaging/Examples/dataset/MLP-AE-dataredux.scd index dc2d937..e357c5a 100644 --- a/release-packaging/Examples/dataset/MLP-AE-dataredux.scd +++ b/release-packaging/Examples/dataset/MLP-AE-dataredux.scd @@ -1,19 +1,20 @@ s.reboot; //Preliminaries: we want some audio, a couple of FluidDataSets, some Buffers ( -~raw = FluidDataSet(s,\MLP40); +~raw = FluidDataSet(s,\Mel40); +~norm = FluidDataSet(s,\Mel40n); ~retrieved = FluidDataSet(s,\ae2); ~audio = Buffer.read(s,File.realpath(FluidBufMelBands.class.filenameSymbol).dirname +/+ "../AudioFiles/Tremblay-ASWINE-ScratchySynth-M.wav"); ~melfeatures = Buffer.new(s); ~stats = Buffer.alloc(s, 7, 40); ~datapoint = Buffer.alloc(s, 40); -~mlp = FluidMLPRegressor(s,[10,2,10],1,1,2,10000,0.01,0.1,10,0); +~mlp = FluidMLPRegressor(s,[9,2,9],activation: 1,outputActivation: 1,tapIn: 0,tapOut: 2,maxIter: 10000,learnRate: 0.1,momentum: 0.1,batchSize: 10,validation: 0.1); +~normalizer = FluidNormalize(s); ) // process the melbands FluidBufMelBands.process(s,~audio, features: ~melfeatures,action: {\done.postln;}); -~raw.free // Divide the time series in 100, and take the mean of each segment and add this as a point to // the 'raw' FluidDataSet ( @@ -31,15 +32,19 @@ FluidBufMelBands.process(s,~audio, features: ~melfeatures,action: {\done.postln; dsWr = FluidDataSetWr.kr(\MLP40, buf: buf, trig: Done.kr(stats)); LocalOut.kr( Done.kr(dsWr)); FreeSelf.kr(count - 99); + Poll.kr(trig,count); }.play; ) // wait for the post window to acknoledge the job is done. +// normalize the input +~normalizer.fitTransform(~raw,~norm); + //we can then run the AE - the server might become yellow :) -~mlp.fit(~raw,~raw,{|x|x.postln;}); +~mlp.fit(~norm,~norm,{|x|x.postln;}); //we can then retrieve the hidden layer #2 -~mlp.predict(~raw,~retrieved) +~mlp.predict(~norm,~retrieved) //check the structure of retrieved ~retrieved.print @@ -47,17 +52,17 @@ FluidBufMelBands.process(s,~audio, features: ~melfeatures,action: {\done.postln; //let's normalise it for display ~normData = FluidDataSet(s,\ae2N); ~reducedarray = Array.new(100); -~normalizer = FluidNormalize(s); -~normalizer.fitTransform(~retrieved,~normData, action:{ +~normalView = FluidNormalize(s); +( +~normalView.fitTransform(~retrieved,~normData, action:{ ~normData.dump{|x| 100.do{|i| ~reducedarray.add(x["data"][i.asString]) }}; }); - +) ~normData.print ~reducedarray.postln; - //Visualise the 2D projection of our original 12D data ( d = ~reducedarray.flatten(1).unlace.deepCollect(1, { |x| x.normalize}); diff --git a/release-packaging/Examples/dataset/demo-dataset-maker-utilities.scd b/release-packaging/Examples/dataset/demo-dataset-maker-utilities.scd index 46bce5c..d216e39 100644 --- a/release-packaging/Examples/dataset/demo-dataset-maker-utilities.scd +++ b/release-packaging/Examples/dataset/demo-dataset-maker-utilities.scd @@ -7,12 +7,12 @@ ~flatbuf = 4.collect{Buffer.new}; // here we instantiate a loader which creates a single large buffer with a dictionary of what was included in it -// ~loader = FluidLoadFolder("/Volumes/machins/projets/newsfeed/smallnum/"); -~loader = FluidLoadFolder("/Volumes/machins/projets/newsfeed/segments/"); +// ~loader = FluidLoadFolder("/Volumes/machins/projets/newsfeed/sons/smallnum/"); +~loader = FluidLoadFolder("/Volumes/machins/projets/newsfeed/sons/segments/"); // here we instantiate a further slicing step if needs be, which iterate through all the items of the FluidLoadFolder and slice the slices with the declared function. Here it is a very picky onset slicer ~slicer = FluidSliceCorpus({ |src,start,num,dest| - FluidBufOnsetSlice.kr(src,start,num,metric: 9, minSliceLength: 17, indices:dest, threshold:2) + FluidBufOnsetSlice.kr(src,start,num,metric: 9, minSliceLength: 17, indices:dest, threshold:2,blocking: 1) }); // here we instantiate a process of description and dataset writing, which will run each slice of the previous slice and write the entry. Note the chain of Done.kr triggers. @@ -20,10 +20,10 @@ var mfcc, stats, writer, flatten,mfccBuf, statsBuf, flatBuf, label, voice; label = data.key; voice = data.value[\voice]; - mfcc = FluidBufMFCC.kr(src,startFrame:start,numFrames:num,numChans:1,features:~mfccbuf[voice],trig:1); - stats = FluidBufStats.kr(~mfccbuf[voice],stats:~statsbuf[voice],trig:Done.kr(mfcc)); - flatten = FluidBufFlatten.kr(~statsbuf[voice],~flatbuf[voice],trig:Done.kr(stats)); - writer = FluidDataSetWr.kr(~ds,label, -1, ~flatbuf[voice], Done.kr(flatten)) + mfcc = FluidBufMFCC.kr(src,startFrame:start,numFrames:num,numChans:1,features:~mfccbuf[voice],trig:1,blocking: 1); + stats = FluidBufStats.kr(~mfccbuf[voice],stats:~statsbuf[voice],trig:Done.kr(mfcc),blocking: 1); + flatten = FluidBufFlatten.kr(~statsbuf[voice],~flatbuf[voice],trig:Done.kr(stats),blocking: 1); + writer = FluidDataSetWr.kr(~ds,label, -1, ~flatbuf[voice], Done.kr(flatten),blocking: 1) }); )