diff --git a/release-packaging/Examples/dataset/1-learning examples/11-compositing-datasets.scd b/release-packaging/Examples/dataset/1-learning examples/11-compositing-datasets.scd index 0198753..3a866c6 100644 --- a/release-packaging/Examples/dataset/1-learning examples/11-compositing-datasets.scd +++ b/release-packaging/Examples/dataset/1-learning examples/11-compositing-datasets.scd @@ -286,6 +286,7 @@ Routine{ ~query.transformJoin(~loudDSn, ~tempDS, ~globalDS) // appends 4 dims of loud to the 8 dims above ~globalDS.print//12 dim: 4 timbre, 4 pitch, 4 loud, all normalised between 0 and 1 +~globalDS.write("/tmp/test12dims.json") // write to file to look at the values // let's assemble the query // first let's normalise our target descriptors @@ -326,14 +327,23 @@ Routine{ ) // to change the relative weight of each dataset, let's change the normalisation range. Larger ranges will mean larger distance, and therefore less importance for that parameter. -// for instance to downplay pitch, let's make it larger by a factor of 2 -~normP.max = 2 +// for instance to downplay pitch, let's make it larger by a factor of 10 around the center of 0.5 +~normP.max = 5.5 +~normP.min = -4.5 ~normP.fitTransform(~pitchDS, ~pitchDSn); // here we can re-run just the part that composites the pitch ~normP.transformPoint(~flatPitchbuf[0], ~targetPitch) //normalise the pitch (all dims) FluidBufCompose.process(s, ~targetPitch, numFrames: 4, destination: ~targetAll, destStartFrame: 4) // copying the 4 stats of pitch we care about +//see that the middle 4 values are much larger in range +~targetAll.getn(0,12,{|x|x.postln;}) + +// let's re-assemble these datasets +~query.transformJoin(~pitchDSn,~timbreDSn, ~tempDS) //appends 4 dims of pitch to 4 dims of timbre +~query.transformJoin(~loudDSn, ~tempDS, ~globalDS) // appends 4 dims of loud to the 8 dims above + // now let's see which is nearest that point ~tree.fit(~globalDS,{~tree.kNearest(~targetAll,{|x|~nearest = x.postln;})}) //just the points with the right lenght conditions, with the curated stats +/////////////////////////////////////////////// // todo: segment then query musaik