Refactor SC wrapper

Split into distinct files 
Use Async commands for NRT processing (again)
nix
Owen Green 5 years ago
parent 85ec2e624f
commit 0b33b1ecaf

File diff suppressed because it is too large Load Diff

@ -0,0 +1,337 @@
#pragma once
#include "Meta.hpp"
namespace fluid {
namespace client {
namespace impl {
// Iterate over kr/ir inputs via callbacks from params object
struct FloatControlsIter
{
FloatControlsIter(float** vals, index N) : mValues(vals), mSize(N) {}
float next() { return mCount >= mSize ? 0 : *mValues[mCount++]; }
void reset(float** vals)
{
mValues = vals;
mCount = 0;
}
index size() const noexcept { return mSize; }
index remain() { return mSize - mCount; }
private:
float** mValues;
index mSize;
index mCount{0};
};
} //impl
//Specializations of param reader for RT and NRT cases (data encoded differently, buffer semantics differ cause of local bufs)
template <typename ArgType> struct ParamReader;
// RT case: we're decoding data from float**, there will be a Unit, we can have LocalBufs
// TODO: All the allocations should be using SC RT allocator, but this won't work reliably until it propagates down through the param set
template<>
struct ParamReader<impl::FloatControlsIter>
{
using Controls = impl::FloatControlsIter;
static auto fromArgs(Unit* /*x*/, Controls& args, std::string, int)
{
// first is string size, then chars
index size = static_cast<index>(args.next());
std::string res;
res.resize(asUnsigned(size));
for (index i = 0; i < size; ++i)
res[asUnsigned(i)] = static_cast<char>(args.next());
return res;
}
static auto fromArgs(Unit*, Controls& args,typename LongArrayT::type&, int)
{
//first is array size, then items
using Container = typename LongArrayT::type;
using Value = typename Container::type;
index size = static_cast<index>(args.next());
Container res(size);
for (index i = 0; i < size; ++i)
res[i] = static_cast<Value>(args.next());
return res;
}
template <typename T>
static std::enable_if_t<std::is_integral<T>::value, T>
fromArgs(Unit*, Controls& args, T, int)
{
return static_cast<index>(args.next());
}
template <typename T>
static std::enable_if_t<std::is_floating_point<T>::value, T>
fromArgs(Unit*, Controls& args, T, int)
{
return args.next();
}
static SCBufferAdaptor* fetchBuffer(Unit* x, index bufnum)
{
if(bufnum >= x->mWorld->mNumSndBufs)
{
index localBufNum = bufnum - x->mWorld->mNumSndBufs;
Graph* parent = x->mParent;
return localBufNum <= parent->localMaxBufNum ?
new SCBufferAdaptor(parent->mLocalSndBufs + localBufNum,x->mWorld,true)
: nullptr;
}
else
return bufnum >= 0 ? new SCBufferAdaptor(bufnum, x->mWorld) : nullptr;
}
static auto fromArgs(Unit* x, Controls& args, BufferT::type&, int)
{
typename LongT::type bufnum = static_cast<typename LongT::type>(
ParamReader::fromArgs(x, args, typename LongT::type(), -1));
return BufferT::type(fetchBuffer(x, bufnum));
}
static auto fromArgs(Unit* x, Controls& args, InputBufferT::type&, int)
{
typename LongT::type bufnum =
static_cast<LongT::type>(fromArgs(x, args, LongT::type(), -1));
return InputBufferT::type(fetchBuffer(x, bufnum));
}
template <typename P>
static std::enable_if_t<IsSharedClient<P>::value, P>
fromArgs(Unit* x, Controls& args, P&, int)
{
auto id = fromArgs(x, args, index{}, 0);
return {id >= 0 ? std::to_string(id).c_str() : "" };
}
};
// NRT case: we're decoding data from sc_msg_iter*, there will be a World*, we can't have LocalBufs
// TODO: All the allocations should be using SC RT allocator (I guess: this will probably always run on the RT thread), but this won't work reliably until it propagates down through the param set
template<>
struct ParamReader<sc_msg_iter>
{
static const char* oscTagToString(char tag)
{
switch (tag)
{
case 'i': return "integer"; break;
case 'f': return "float"; break;
case 'd': return "double"; break;
case 's': return "string"; break;
case 'b': return "blob"; break;
case 't': return "time tag"; break;
default: return "unknown type";
}
}
static const char* argTypeToString(std::string&)
{
return "string";
}
template <typename T>
static std::enable_if_t<std::is_integral<T>::value, const char*>
argTypeToString(T&)
{
return "integer";
}
template <typename T>
static std::enable_if_t<std::is_floating_point<T>::value, const char*>
argTypeToString(T&)
{
return "float";
}
static const char* argTypeToString(BufferT::type&)
{
return "buffer";
}
static const char* argTypeToString(InputBufferT::type&)
{
return "buffer";
}
template <typename P>
static std::enable_if_t<IsSharedClient<P>::value,const char*>
argTypeToString(P&)
{
return "shared_object"; //not ideal
}
static bool argTypeOK(std::string&, char tag)
{
return tag == 's';
}
template <typename T>
static std::enable_if_t<std::is_integral<T>::value
|| std::is_floating_point<T>::value, bool>
argTypeOK(T&, char tag)
{
return tag == 'i' || tag == 'f' || tag == 'd';
}
static bool argTypeOK(BufferT::type&, char tag)
{
return tag == 'i';
}
static bool argTypeOK(InputBufferT::type&, char tag)
{
return tag == 'i';
}
template <typename P>
static std::enable_if_t<IsSharedClient<P>::value,bool>
argTypeOK(P&, char tag)
{
return tag == 'i';
}
static auto fromArgs(World*, sc_msg_iter& args, std::string, int)
{
const char* recv = args.gets("");
return std::string(recv ? recv : "");
}
template <typename T>
static std::enable_if_t<std::is_integral<T>::value, T>
fromArgs(World*, sc_msg_iter& args, T, int defVal)
{
return args.geti(defVal);
}
template <typename T>
static std::enable_if_t<std::is_floating_point<T>::value, T>
fromArgs(World*, sc_msg_iter& args, T, int)
{
return args.getf();
}
static SCBufferAdaptor* fetchBuffer(World* x, index bufnum)
{
if(bufnum >= x->mNumSndBufs)
{
std::cout << "ERROR: bufnum " << bufnum << " is invalid for global buffers\n";
return nullptr;
}
else
return bufnum >= 0 ? new SCBufferAdaptor(bufnum, x) : nullptr;
}
static auto fromArgs(World* x, sc_msg_iter& args, BufferT::type&, int)
{
typename LongT::type bufnum = static_cast<typename LongT::type>(
ParamReader::fromArgs(x, args, typename LongT::type(), -1));
return BufferT::type(fetchBuffer(x, bufnum));
}
static auto fromArgs(World* x, sc_msg_iter& args, InputBufferT::type&, int)
{
typename LongT::type bufnum =
static_cast<LongT::type>(fromArgs(x, args, LongT::type(), -1));
return InputBufferT::type(fetchBuffer(x, bufnum));
}
template <typename P>
static std::enable_if_t<IsSharedClient<P>::value, P>
fromArgs(World* x, sc_msg_iter& args, P&, int)
{
auto id = fromArgs(x, args, index{}, 0);
return {id >= 0 ? std::to_string(id).c_str() : ""};
}
static auto fromArgs(World*, sc_msg_iter& args,typename LongArrayT::type&, int)
{
//first is array size, then items
using Container = typename LongArrayT::type;
using Value = typename Container::type;
index size = static_cast<index>(args.geti());
Container res(size);
for (index i = 0; i < size; ++i)
res[i] = static_cast<Value>(args.geti());
return res;
}
};
template <typename Wrapper>
struct ClientParams{
// Iterate over arguments via callbacks from params object
template <typename ArgType, size_t N, typename T>
struct Setter
{
static constexpr index argSize =
Wrapper::Client::getParameterDescriptors().template get<N>().fixedSize;
/// Grizzly enable_if hackage coming up. Need to brute force an int from incoming data into a string param for FluidDataSet / FluidLabelSet.
/// This will go away one day
template<typename Context, typename Client = typename Wrapper::Client, size_t Number = N>
std::enable_if_t<!impl::IsNamedShared_v<Client> || Number!=0, typename T::type>
operator()(Context* x, ArgType& args)
{
// Just return default if there's nothing left to grab
if (args.remain() == 0)
{
std::cout << "WARNING: " << Wrapper::getName()
<< " received fewer parameters than expected\n";
return Wrapper::Client::getParameterDescriptors().template makeValue<N>();
}
ParamLiteralConvertor<T, argSize> a;
using LiteralType =
typename ParamLiteralConvertor<T, argSize>::LiteralType;
for (index i = 0; i < argSize; i++)
a[i] = static_cast<LiteralType>(
ParamReader<ArgType>::fromArgs(x, args, a[0], 0));
return a.value();
}
template<typename Context, typename Client = typename Wrapper::Client, size_t Number = N>
std::enable_if_t<impl::IsNamedShared_v<Client> && Number==0, typename T::type>
operator()(Context* x, ArgType& args)
{
// Just return default if there's nothing left to grab
if (args.remain() == 0)
{
std::cout << "WARNING: " << Wrapper::getName()
<< " received fewer parameters than expected\n";
return Wrapper::Client::getParameterDescriptors().template makeValue<N>();
}
index id = ParamReader<ArgType>::fromArgs(x,args,index{},0);
return std::to_string(id);
}
};
template <typename ArgType, size_t N, typename T>
struct Getter
{
static constexpr index argSize =
Wrapper::Client::getParameterDescriptors().template get<N>().fixedSize;
};
};
}
}

@ -0,0 +1,103 @@
#pragma once
namespace fluid {
namespace client {
struct ToFloatArray
{
static index allocSize(typename BufferT::type) { return 1; }
template <typename T>
static std::enable_if_t<
std::is_integral<T>::value || std::is_floating_point<T>::value, index>
allocSize(T)
{
return 1;
}
static index allocSize(std::string s)
{
return asSigned(s.size()) + 1;
} // put null char at end when we send
static index allocSize(FluidTensor<std::string, 1> s)
{
index count = 0;
for (auto& str : s) count += (str.size() + 1);
return count;
}
template <typename T>
static index allocSize(FluidTensor<T, 1> s)
{
return s.size();
}
template <typename... Ts>
static std::tuple<std::array<index, sizeof...(Ts)>, index>
allocSize(std::tuple<Ts...>&& t)
{
return allocSizeImpl(std::forward<decltype(t)>(t),
std::index_sequence_for<Ts...>());
};
template <typename... Ts, size_t... Is>
static std::tuple<std::array<index, sizeof...(Ts)>, index>
allocSizeImpl(std::tuple<Ts...>&& t, std::index_sequence<Is...>)
{
index size{0};
std::array<index, sizeof...(Ts)> res;
(void) std::initializer_list<int>{
(res[Is] = size, size += ToFloatArray::allocSize(std::get<Is>(t)),
0)...};
return std::make_tuple(res,
size); // array of offsets into allocated buffer &
// total number of floats to alloc
};
static void convert(float* f, typename BufferT::type buf)
{
f[0] = static_cast<SCBufferAdaptor*>(buf.get())->bufnum();
}
template <typename T>
static std::enable_if_t<std::is_integral<T>::value ||
std::is_floating_point<T>::value>
convert(float* f, T x)
{
f[0] = static_cast<float>(x);
}
static void convert(float* f, std::string s)
{
std::copy(s.begin(), s.end(), f);
f[s.size()] = 0; // terminate
}
static void convert(float* f, FluidTensor<std::string, 1> s)
{
for (auto& str : s)
{
std::copy(str.begin(), str.end(), f);
f += str.size();
*f++ = 0;
}
}
template <typename T>
static void convert(float* f, FluidTensor<T, 1> s)
{
static_assert(std::is_convertible<T, float>::value,
"Can't convert this to float output");
std::copy(s.begin(), s.end(), f);
}
template <typename... Ts, size_t... Is>
static void convert(float* f, std::tuple<Ts...>&& t,
std::array<index, sizeof...(Ts)> offsets,
std::index_sequence<Is...>)
{
(void) std::initializer_list<int>{
(convert(f + offsets[Is], std::get<Is>(t)), 0)...};
}
};
}
}

@ -0,0 +1,29 @@
#pragma once
#include "SCBufferAdaptor.hpp"
namespace fluid {
namespace client {
namespace impl {
template <size_t N, typename T>
struct AssignBuffer
{
void operator()(const typename BufferT::type& p, World* w)
{
if (auto b = static_cast<SCBufferAdaptor*>(p.get())) b->assignToRT(w);
}
};
template <size_t N, typename T>
struct CleanUpBuffer
{
void operator()(const typename BufferT::type& p)
{
if (auto b = static_cast<SCBufferAdaptor*>(p.get())) b->cleanUp();
}
};
}
}
}

@ -0,0 +1,47 @@
#pragma once
#include <SC_ReplyImpl.hpp>
namespace fluid{
namespace client{
void* copyReplyAddress(InterfaceTable* ft, World* inWorld, void* inreply)
{
if(! inreply) return nullptr;
ReplyAddress* reply = (ReplyAddress*)ft->fRTAlloc(inWorld, sizeof(ReplyAddress));
*reply = *(static_cast<ReplyAddress*>(inreply));
return reply;
}
void deleteReplyAddress(InterfaceTable* ft, World* inWorld, void* inreply)
{
if(! inreply) return;
ft->fRTFree(inWorld,(ReplyAddress*)inreply);
}
void* copyReplyAddress(void* inreply)
{
if(! inreply) return nullptr;
ReplyAddress* reply = new ReplyAddress();
*reply = *(static_cast<ReplyAddress*>(inreply));
return reply;
}
void deleteReplyAddress(void* inreply)
{
if(! inreply) return;
delete (ReplyAddress*)inreply;
}
}
}

@ -0,0 +1,42 @@
#pragma once
#include "NonRealtime.hpp"
#include "Realtime.hpp"
namespace fluid {
namespace client {
template <typename Client> class FluidSCWrapper;
namespace impl {
template <typename Client,typename Wrapper>
struct BaseChooser
{
template<bool>struct Choose
{
using type = NonRealTime<Client,Wrapper>;
};
template<>
struct Choose<true>
{
using type = RealTime<Client,Wrapper>;
};
using RT = typename Client::isRealTime;
static constexpr bool UseRealTime = RT::value && !IsModel_t<Client>::value;
using type = typename Choose<UseRealTime>::type;
};
template <typename Client,typename Wrapper>
using BaseChooser_t = typename BaseChooser<Client,Wrapper>::type;
template <typename Client>
using FluidSCWrapperBase = BaseChooser_t<Client,FluidSCWrapper<Client>>;
}
}
}

@ -0,0 +1,261 @@
#pragma once
#include "ArgsFromClient.hpp"
#include "ArgsToClient.hpp"
namespace fluid {
namespace client {
template<typename FluidSCWrapper, typename Client>
struct FluidSCMessaging{
static auto getInterfaceTable(){ return FluidSCWrapper::getInterfaceTable(); }
static auto getName(){ return FluidSCWrapper::getName(); }
template <size_t N>
struct MessageDispatchCmd
{
using Descriptor = typename Client::MessageSetType::template MessageDescriptorAt<N>;
using ArgTuple = typename Descriptor::ArgumentTypes;
using ReturnType = typename Descriptor::ReturnType;
using IndexList = typename Descriptor::IndexList;
static constexpr size_t Message = N;
index id;
ArgTuple args;
ReturnType result;
std::string name;
IndexList argIndices;
};
template <size_t N, typename T>
struct SetupMessageCmd
{
void operator()(const T& message)
{
static std::string messageName = std::string{getName()} + '/' + message.name;
auto ft = getInterfaceTable();
ft->fDefinePlugInCmd(messageName.c_str(), doMessage<N>,(void*)messageName.c_str());
}
};
template <typename Message>
static bool validateMessageArgs(Message* msg, sc_msg_iter* inArgs)
{
using ArgTuple = decltype(msg->args);
std::string tags(inArgs->tags + inArgs->count);//evidently this needs commenting: construct string at pointer offset by tag count, to pick up args
bool willContinue = true;
bool typesMatch = true;
auto& args = msg->args;
constexpr size_t expectedArgCount = std::tuple_size<ArgTuple>::value;
/// TODO this squawks if we have a completion message, so maybe we can check if extra arg is a 'b' and squawk if not?
// if(tags.size() > expectedArgCount)
// {
// std::cout << "WARNING: " << msg->name << " received more arguments than expected (got "
// << tags.size() << ", expect " << expectedArgCount << ")\n";
// }
if(tags.size() < expectedArgCount)
{
std::cout << "ERROR: " << msg->name << " received fewer arguments than expected (got "
<< tags.size() << ", expect " << expectedArgCount << ")\n";
willContinue = false;
}
auto tagsIter = tags.begin();
auto tagsEnd = tags.end();
ForEach(args,[&typesMatch,&tagsIter,&tagsEnd](auto& arg){
if(tagsIter == tagsEnd)
{
typesMatch = false;
return;
}
char t = *(tagsIter++);
typesMatch = typesMatch && ParamReader<sc_msg_iter>::argTypeOK(arg,t);
});
willContinue = willContinue && typesMatch;
if(!typesMatch)
{
auto& report = std::cout;
report << "ERROR: " << msg->name << " type signature incorrect.\nExpect: (";
size_t i{0};
ForEach(args, [&i](auto& x){
std::cout << ParamReader<sc_msg_iter>::argTypeToString(x);
if(i < (std::tuple_size<ArgTuple>::value - 1 ) )
{
std::cout << " ,";
}
i++;
});
report << ")\nReceived: (";
i = 0;
for(auto t: tags)
{
report << ParamReader<sc_msg_iter>::oscTagToString(t);
if( i < ( tags.size() - 1 ) )
{
report << ", ";
}
i++;
}
report << ")\n";
}
return willContinue;
}
template<size_t N>
static void doMessage(World* inWorld, void* inUserData, struct sc_msg_iter* args, void* replyAddr)
{
using MessageData = MessageDispatchCmd<N>;
auto msg = new MessageData();
msg->id = args->geti();
///TODO make this step contingent on verbosity or something, in the name of effieciency
bool willContinue = validateMessageArgs(msg, args);
if(!willContinue)
{
delete msg;
return;
}
msg->name = std::string{'/'} + (const char*)(inUserData);
ForEach(msg-> args,[inWorld,&args](auto& thisarg)
{
thisarg = ParamReader<sc_msg_iter>::fromArgs(inWorld, *args,thisarg,0);
});
size_t completionMsgSize{args ? args->getbsize() : 0};
assert(completionMsgSize <= std::numeric_limits<int>::max());
char* completionMsgData = nullptr;
if (completionMsgSize) {
completionMsgData = (char*)getInterfaceTable()->fRTAlloc(inWorld, completionMsgSize);
args->getb(completionMsgData, completionMsgSize);
}
getInterfaceTable()->fDoAsynchronousCommand(inWorld, replyAddr, getName(), msg,
[](World* world, void* data) // NRT thread: invocation
{
MessageData* m = static_cast<MessageData*>(data);
using ReturnType = typename MessageData::ReturnType;
if(auto ptr = FluidSCWrapper::get(m->id).lock())
{
m->result =
ReturnType{invokeImpl<N>(ptr->mClient, m->args,m->argIndices)};
if (!m->result.ok())
FluidSCWrapper::printResult(world, m->result);
} else FluidSCWrapper::printNotFound(m->id);
return true;
},
[](World* world, void* data) // RT thread: response
{
MessageData* m = static_cast<MessageData*>(data);
MessageData::Descriptor::template forEachArg<typename BufferT::type,
impl::AssignBuffer>(m->args,
world);
if(m->result.status() != Result::Status::kError)
messageOutput(m->name, m->id, m->result, world);
else
{
auto ft = getInterfaceTable();
ft->fSendNodeReply(ft->fGetNode(world,0),-1, m->name.c_str(),0, nullptr);
}
return true;
},
nullptr, // NRT Thread: No-op
[](World* /*w*/, void* data) // RT thread: clean up
{
MessageData* m = static_cast<MessageData*>(data);
delete m;
},
static_cast<int>(completionMsgSize), completionMsgData);
}
template <size_t N, typename ArgsTuple, size_t... Is> // Call from NRT
static decltype(auto) invokeImpl(Client& x, ArgsTuple& args,
std::index_sequence<Is...>)
{
return x.template invoke<N>(x, std::get<Is>(args)...);
}
template <typename T> // call from RT
static void messageOutput(const std::string& s, index id, MessageResult<T>& result, World* world)
{
auto ft = getInterfaceTable();
// allocate return values
index numArgs = ToFloatArray::allocSize(static_cast<T>(result));
if(numArgs > 2048)
{
std::cout << "ERROR: Message response too big to send (" << asUnsigned(numArgs) * sizeof(float) << " bytes)." << std::endl;
return;
}
float* values = new float[asUnsigned(numArgs)];
// copy return data
ToFloatArray::convert(values, static_cast<T>(result));
ft->fSendNodeReply(ft->fGetNode(world,0), static_cast<int>(id), s.c_str(),
static_cast<int>(numArgs), values);
delete[] values;
}
static void messageOutput(const std::string& s,index id, MessageResult<void>&, World* world)
{
auto ft = getInterfaceTable();
ft->fSendNodeReply(ft->fGetNode(world,0), static_cast<int>(id), s.c_str(), 0, nullptr);
}
template <typename... Ts>
static void messageOutput(const std::string& s, index id, MessageResult<std::tuple<Ts...>>& result, World* world)
{
std::array<index, sizeof...(Ts)> offsets;
index numArgs;
std::tie(offsets, numArgs) =
ToFloatArray::allocSize(static_cast<std::tuple<Ts...>>(result));
if(numArgs > 2048)
{
std::cout << "ERROR: Message response too big to send (" << asUnsigned(numArgs) * sizeof(float) << " bytes)." << std::endl;
return;
}
float* values = new float[asUnsigned(numArgs)];
ToFloatArray::convert(values, std::tuple<Ts...>(result), offsets,
std::index_sequence_for<Ts...>());
auto ft = getInterfaceTable();
ft->fSendNodeReply(ft->fGetNode(world,0), id, s.c_str(),
static_cast<int>(numArgs), values);
delete[] values;
}
};
}
}

@ -0,0 +1,59 @@
#pragma once
#include <clients/nrt/FluidSharedInstanceAdaptor.hpp>
#include <clients/common/FluidNRTClientWrapper.hpp>
#include <clients/common/SharedClientUtils.hpp>
namespace fluid {
namespace client {
namespace impl {
/// Named, shared clients already have a lookup table in their adaptor class
template <typename T>
struct IsNamedShared
{
using type = std::false_type;
};
//TODO: make less tied to current implementation
template <typename T>
struct IsNamedShared<NRTThreadingAdaptor<NRTSharedInstanceAdaptor<T>>>
{
using type = std::true_type;
};
template<typename T>
using IsNamedShared_t = typename IsNamedShared<T>::type;
template<typename T>
constexpr bool IsNamedShared_v = IsNamedShared_t<T>::value;
/// Models don't, but still need to survive CMD-.
template<typename T>
struct IsModel
{
using type = std::false_type;
};
template<typename T>
struct IsModel<NRTThreadingAdaptor<ClientWrapper<T>>>
{
using type = typename ClientWrapper<T>::isModelObject;
};
template<typename T>
struct IsModel<ClientWrapper<T>>
{
using type = typename ClientWrapper<T>::isModelObject;
};
template<typename T>
using IsModel_t = typename IsModel<T>::type;
template<typename T>
constexpr bool IsModel_v = IsModel_t<T>::value;
}
}
}

@ -0,0 +1,940 @@
#pragma once
#include "BufferFuncs.hpp"
#include "Meta.hpp"
#include "SCBufferAdaptor.hpp"
#include "CopyReplyAddress.hpp"
#include "Messaging.hpp"
#include "RealTimeBase.hpp"
#include <clients/common/FluidBaseClient.hpp>
#include <SC_PlugIn.hpp>
#include <SC_ReplyImpl.hpp>
#include <map>
namespace fluid {
namespace client {
namespace impl {
/// Non Real Time Processor
template <typename Client, typename Wrapper>
class NonRealTime : public SCUnit
{
using Params = typename Client::ParamSetType;
template<typename T,typename...Args>
static T* rtalloc(World* world,Args&&...args)
{
void* space = getInterfaceTable()->fRTAlloc(world, sizeof(T));
return new (space) T{std::forward<Args>(args)...};
}
/// Instance cache
struct CacheEntry
{
CacheEntry(Params& p):mParams{p},mClient{mParams}
{}
Params mParams;
Client mClient;
};
using CacheEntryPointer = std::shared_ptr<CacheEntry>;
using WeakCacheEntryPointer = std::weak_ptr<CacheEntry>; //could use weak_type in 17
using Cache = std::map<index,CacheEntryPointer>;
static bool isNull(WeakCacheEntryPointer const& weak) {
return !weak.owner_before(WeakCacheEntryPointer{}) && !WeakCacheEntryPointer{}.owner_before(weak);
}
static Cache mCache;
public:
static WeakCacheEntryPointer get(index id)
{
auto lookup = mCache.find(id);
return lookup == mCache.end() ? WeakCacheEntryPointer() : lookup->second;
}
static WeakCacheEntryPointer add(index id, CacheEntry&& entry)
{
if(isNull(get(id)))
{
auto result = mCache.emplace(id,
std::make_shared<CacheEntry>(std::move(entry)));
return result.second ? (result.first)->second : WeakCacheEntryPointer(); //sob
}
else //client has screwed up
{
std::cout << "ERROR: ID " << id << " already in use\n";
return {};
}
}
static void remove(index id)
{
mCache.erase(id);
}
static void printNotFound(index id)
{
std::cout << "ERROR: " << Wrapper::getName() << " no instance with ID " << id << std::endl;
}
private:
static InterfaceTable* getInterfaceTable() { return Wrapper::getInterfaceTable() ;}
template <size_t N, typename T>
using ParamsFromOSC = typename ClientParams<Wrapper>::template Setter<sc_msg_iter, N, T>;
template <size_t N, typename T>
using ParamsFromSynth = typename ClientParams<Wrapper>::template Setter<impl::FloatControlsIter, N, T>;
struct NRTCommand
{
NRTCommand(World*, sc_msg_iter* args, bool consumeID = true)
{
auto count = args->count;
auto pos = args->rdpos;
mID = args->geti();
if(!consumeID)
{
args->count = count;
args->rdpos = pos;
}
}
NRTCommand(){}
explicit NRTCommand(index id):mID{id}{}
bool stage2(World*) { std::cout << "Nope\n"; return true; } //nrt
bool stage3(World*) { return true; } //rt
bool stage4(World*) { return true; } //nrt
void cleanup(World*) {} //rt
void sendReply(World* world, const char* name,bool success)
{
if(mID < 0) return;
auto ft = getInterfaceTable();
auto root = ft->fGetNode(world,0);
float res[2] = {static_cast<float>(success),static_cast<float>(mID)};
std::string slashname = std::string{'/'} + name;
ft->fSendNodeReply(root,0, slashname.c_str(), 2, res);
}
// protected:
index mID;
};
struct CommandNew : public NRTCommand
{
CommandNew(World* world, sc_msg_iter* args)
: NRTCommand{world,args, !IsNamedShared_v<Client>},
mParams{Client::getParameterDescriptors()}
{
mParams.template setParameterValuesRT<ParamsFromOSC>(nullptr, world, *args);
}
CommandNew(index id, World*, FloatControlsIter& args, Unit* x)
:NRTCommand{id},
mParams{Client::getParameterDescriptors()}
{
mParams.template setParameterValuesRT<ParamsFromSynth>(nullptr, x, args);
}
static const char* name()
{
static std::string cmd = std::string(Wrapper::getName()) + "/new";
return cmd.c_str();
}
bool stage2(World*)
{
// auto entry = ;
mResult = (!isNull(add(NRTCommand::mID, CacheEntry{mParams})));
//Sigh. The cache entry above has both the client instance and main params instance.
// The client is linked to the params by reference; I've not got the in-place constrction
// working properly so that params are in their final resting place by the time we make the client
// so (for) now we need to manually repoint the client to the correct place. Or badness.
if(mResult)
{
auto ptr = get(NRTCommand::mID).lock();
ptr->mClient.setParams(ptr->mParams);
}
return mResult;
}
bool stage3(World* w)
{
NRTCommand::sendReply(w, name(), mResult);
return true;
}
private:
bool mResult;
Params mParams;
};
struct CommandFree: public NRTCommand
{
using NRTCommand::NRTCommand;
template<bool b>
struct CancelCheck{
void operator()(index id)
{
if(auto ptr = get(id).lock())
{
auto& client = ptr->mClient;
if(!client.synchronous() && client.state() == ProcessState::kProcessing)
std::cout << Wrapper::getName()
<< ": Processing cancelled"
<< std::endl;
}
}
};
template<>
struct CancelCheck<true>{
void operator()(index)
{}
};
static const char* name()
{
static std::string cmd = std::string(Wrapper::getName()) + "/free";
return cmd.c_str();
}
bool stage2(World*)
{
CancelCheck<IsRTQueryModel>()(NRTCommand::mID);
remove(NRTCommand::mID);
return true;
}
bool stage3(World* w)
{
NRTCommand::sendReply(w, name(), true);
return true;
}
};
/// Not registered as a PlugInCmd. Triggered by worker thread callback
struct CommandAsyncComplete: public NRTCommand
{
CommandAsyncComplete(World*, index id, void* replyAddress)
{
NRTCommand::mID = id;
mReplyAddress = replyAddress;
}
static const char* name() { return CommandProcess::name(); }
bool stage2(World* world)
{
std::cout << "In Async completion\n";
if(auto ptr = get(NRTCommand::mID).lock())
{
Result r;
auto& client = ptr->mClient;
ProcessState s = client.checkProgress(r);
if (s == ProcessState::kDone || s == ProcessState::kDoneStillProcessing)
{
if (r.status() == Result::Status::kCancelled)
{
std::cout << Wrapper::getName()
<< ": Processing cancelled"
<< std::endl;
return false;
}
client.checkProgress(r);
mSuccess = !(r.status() == Result::Status::kError);
if (!r.ok())
{
Wrapper::printResult(world,r);
if(r.status() == Result::Status::kError) return false;
}
return true;
}
}
return false;
}
bool stage3(World* world)
{
if(auto ptr = get(NRTCommand::mID).lock())
{
auto& params = ptr->mParams;
params.template forEachParamType<BufferT, AssignBuffer>(world);
//NRTCommand::sendReply(world, name(), true);
return true;
}
return false;
}
bool stage4(World*) //nrt
{
if(auto ptr = get(NRTCommand::mID).lock())
{
ptr->mParams.template forEachParamType<BufferT, impl::CleanUpBuffer>();
return true;
}
return false;
}
void cleanup(World* world) {
if(auto ptr = get(NRTCommand::mID).lock() && NRTCommand::mID >= 0)
NRTCommand::sendReply(world, name(), mSuccess);
if(mReplyAddress)
{
ReplyAddress* r = static_cast<ReplyAddress*>(mReplyAddress);
delete r;
}
} //rt
bool mSuccess;
void* mReplyAddress{nullptr};
};
static void doProcessCallback(World* world, index id,size_t completionMsgSize,char* completionMessage,void* replyAddress)
{
std::cout << "In callback\n";
auto ft = getInterfaceTable();
struct Context{
World* mWorld;
index mID;
size_t mCompletionMsgSize;
char* mCompletionMessage;
void* mReplyAddress;
};
Context* c = new Context{world,id,completionMsgSize,completionMessage,replyAddress};
auto runCompletion = [](FifoMsg* msg){
std::cout << "In FIFOMsg\n";
Context* c = static_cast<Context*>(msg->mData);
World* world = c->mWorld;
index id = c->mID;
auto ft = getInterfaceTable();
void* space = ft->fRTAlloc(world,sizeof(CommandAsyncComplete));
CommandAsyncComplete* cmd = new (space) CommandAsyncComplete(world, id,c->mReplyAddress);
runAsyncCommand(world, cmd, c->mReplyAddress, c->mCompletionMsgSize, c->mCompletionMessage);
};
auto tidyup = [](FifoMsg* msg)
{
Context* c = static_cast<Context*>(msg->mData);
delete c;
};
FifoMsg msg;
msg.Set(world, runCompletion, tidyup, c);
ft->fSendMsgToRT(world,msg);
}
struct CommandProcess: public NRTCommand
{
CommandProcess(World* world, sc_msg_iter* args): NRTCommand{world, args}
{
auto& ar = *args;
if(auto ptr = get(NRTCommand::mID).lock())
{
ptr->mParams.template setParameterValuesRT<ParamsFromOSC>(nullptr, world, ar);
mSynchronous = static_cast<bool>(ar.geti());
} //if this fails, we'll hear about it in stage2 anyway
}
explicit CommandProcess(index id,bool synchronous):NRTCommand{id},mSynchronous(synchronous)
{}
static const char* name()
{
static std::string cmd = std::string(Wrapper::getName()) + "/process";
return cmd.c_str();
}
bool stage2(World* world)
{
if(auto ptr = get(NRTCommand::mID).lock())
{
auto& params = ptr->mParams;
auto& client = ptr->mClient;
// if(mOSCData)
// {
// params.template setParameterValuesRT<ParamsFromOSC>(nullptr, world, *mOSCData);
// mSynchronous = static_cast<bool>(mOSCData->geti());
// }
Result result = validateParameters(params);
Wrapper::printResult(world, result);
if (result.status() != Result::Status::kError)
{
// client.done()
client.setSynchronous(mSynchronous);
index id = NRTCommand::mID;
size_t completionMsgSize = mCompletionMsgSize;
char* completionMessage = mCompletionMessage;
void* replyAddress = copyReplyAddress(mReplyAddr);
auto callback = [world,id,completionMsgSize,completionMessage,replyAddress](){
doProcessCallback(world,id,completionMsgSize,completionMessage,replyAddress);
};
result = mSynchronous ? client.enqueue(params) : client.enqueue(params,callback);
Wrapper::printResult(world, result);
if(result.ok())
{
mResult = client.process();
Wrapper::printResult(world,mResult);
return mSynchronous && mResult.ok();
}
}
}
else
{
mResult = Result{Result::Status::kError, "No ", Wrapper::getName(), " with ID ", NRTCommand::mID};
Wrapper::printResult(world,mResult);
}
return false;
}
//Only for blocking execution
bool stage3(World* world) //rt
{
if(auto ptr = get(NRTCommand::mID).lock())
{
ptr->mParams.template forEachParamType<BufferT, AssignBuffer>(world);
// NRTCommand::sendReply(world, name(), mResult.ok());
return true;
}
std::cout << "Ohno\n";
return false;
}
//Only for blocking execution
bool stage4(World*) //nrt
{
if(auto ptr = get(NRTCommand::mID).lock())
{
ptr->mParams.template forEachParamType<BufferT, impl::CleanUpBuffer>();
return true;
}
return false;
}
void cleanup(World* world) {
if(auto ptr = get(NRTCommand::mID).lock() && NRTCommand::mID >= 0 && mSynchronous)
NRTCommand::sendReply(world, name(), mResult.ok());
if(mReplyAddr)
deleteReplyAddress(mReplyAddr);
// getInterfaceTable()->fRTFree(world,mReplyAddr);
} //rt
bool synchronous()
{
return mSynchronous;
}
void addCompletionMessage(size_t size, char* message, void* addr)
{
mCompletionMsgSize = size;
mCompletionMessage = message;
mReplyAddr = copyReplyAddress(addr);
// ReplyAddress* rr = static_cast<ReplyAddress*>(addr);
// if(addr)mReplyAddr = *rr;
}
// private:
Result mResult;
bool mSynchronous;
size_t mCompletionMsgSize{0};
char* mCompletionMessage{nullptr};
void* mReplyAddr{nullptr};
// sc_msg_iter* mOSCData;
};
struct CommandProcessNew: public NRTCommand
{
CommandProcessNew(World* world, sc_msg_iter* args)
: mNew{world,args},
mProcess{mNew.mID,false}
{
mProcess.mSynchronous = args->geti();
}
CommandProcessNew(index id, World* world, FloatControlsIter& args, Unit* x)
: mNew{id, world, args, x},
mProcess{id}
{}
static const char* name()
{
static std::string cmd = std::string(Wrapper::getName()) + "/processNew";
return cmd.c_str();
}
bool stage2(World* world)
{
return mNew.stage2(world) ? mProcess.stage2(world) : false;
}
bool stage3(World* world) //rt
{
return mProcess.stage3(world);
}
bool stage4(World* world) //rt
{
return mProcess.stage4(world);
}
void cleanup(World* world)
{
mProcess.cleanup(world);
}
bool synchronous()
{
return mProcess.synchronous();
}
void addCompletionMessage(size_t size, char* message,void* addr)
{
mProcess.addCompletionMessage(size, message,addr);
}
private:
CommandNew mNew;
CommandProcess mProcess;
};
struct CommandCancel: public NRTCommand
{
CommandCancel(World* world, sc_msg_iter* args): NRTCommand{world, args}
{}
static const char* name()
{
static std::string cmd = std::string(Wrapper::getName()) + "/cancel";
return cmd.c_str();
}
bool stage2(World*)
{
if(auto ptr = get(NRTCommand::mID).lock())
{
auto& client = ptr->mClient;
if(!client.synchronous())
{
client.cancel();
return true;
}
}
return false;
}
};
struct CommandSetParams: public NRTCommand
{
CommandSetParams(World* world, sc_msg_iter* args)
: NRTCommand{world, args}
{
auto& ar = *args;
if(auto ptr = get(NRTCommand::mID).lock())
{
ptr->mParams.template setParameterValuesRT<ParamsFromOSC>(nullptr, world, ar);
Result result = validateParameters(ptr->mParams);
ptr->mClient.setParams(ptr->mParams);
NRTCommand::sendReply(world, name(), result.ok());
} else printNotFound(NRTCommand::mID);
}
static const char* name()
{
static std::string cmd = std::string(Wrapper::getName()) + "/setParams";
return cmd.c_str();
}
};
template<typename Command>
static auto runAsyncCommand(World* world, Command* cmd, void* replyAddr,
size_t completionMsgSize, char* completionMsgData)
{
auto ft = getInterfaceTable();
return ft->fDoAsynchronousCommand(world, replyAddr,Command::name(),cmd,
[](World* w, void* d) { return static_cast<Command*>(d)->stage2(w); },
[](World* w, void* d) { return static_cast<Command*>(d)->stage3(w); },
[](World* w, void* d) { return static_cast<Command*>(d)->stage4(w); },
[](World* w, void* d)
{
auto cmd = static_cast<Command*>(d);
cmd->cleanup(w);
cmd->~Command();
getInterfaceTable()->fRTFree(w,d);
},
static_cast<int>(completionMsgSize), completionMsgData);
}
static auto runAsyncCommand(World* world, CommandProcess* cmd, void* replyAddr,
size_t completionMsgSize, char* completionMsgData)
{
if(!cmd->synchronous())
{
cmd->addCompletionMessage(completionMsgSize,completionMsgData,replyAddr);
return runAsyncCommand<CommandProcess>(world, cmd, replyAddr, 0, nullptr);
}
else return runAsyncCommand<CommandProcess>(world, cmd, replyAddr, completionMsgSize, completionMsgData);
}
static auto runAsyncCommand(World* world, CommandProcessNew* cmd, void* replyAddr,
size_t completionMsgSize, char* completionMsgData)
{
if(!cmd->synchronous())
{
cmd->addCompletionMessage(completionMsgSize,completionMsgData,replyAddr);
return runAsyncCommand<CommandProcessNew>(world, cmd, replyAddr, 0, nullptr);
}
else return runAsyncCommand<CommandProcessNew>(world, cmd, replyAddr, completionMsgSize, completionMsgData);
}
template<typename Command>
static void defineNRTCommand()
{
auto ft = getInterfaceTable();
auto commandRunner = [](World* world, void*, struct sc_msg_iter* args, void* replyAddr)
{
auto ft = getInterfaceTable();
void* space = ft->fRTAlloc(world,sizeof(Command));
Command* cmd = new (space) Command(world, args);
//This is brittle, but can't think of something better offhand
//This is the only place we can check for a completion message at the end of the OSC packet
//beause it has to be passed on to DoAsynhronousCommand at this point. However, detecting correctly
//relies on the Command type having fully consumed arguments from the args iterator in the constructor for cmd
size_t completionMsgSize{args ? args->getbsize() : 0};
assert(completionMsgSize <= std::numeric_limits<int>::max());
char* completionMsgData = nullptr;
if (completionMsgSize) {
completionMsgData = (char*)ft->fRTAlloc(world, completionMsgSize);
args->getb(completionMsgData, completionMsgSize);
}
runAsyncCommand(world, cmd, replyAddr, completionMsgSize, completionMsgData);
};
ft->fDefinePlugInCmd(Command::name(),commandRunner,nullptr);
}
struct NRTProgressUnit: SCUnit
{
static const char* name()
{
static std::string n = std::string(Wrapper::getName()) + "Monitor";
return n.c_str();
}
NRTProgressUnit()
{
mInterval = static_cast<index>(0.02 / controlDur());
set_calc_function<NRTProgressUnit, &NRTProgressUnit::next>();
Wrapper::getInterfaceTable()->fClearUnitOutputs(this, 1);
}
void next(int)
{
if (0 == mCounter++)
{
index id = static_cast<index>(mInBuf[0][0]);
if(auto ptr = get(id).lock())
{
if(ptr->mClient.done()) mDone = 1;
out0(0) = static_cast<float>(ptr->mClient.progress());
}
else
std::cout << "WARNING: No " << Wrapper::getName() << " with ID " << id << std::endl;
}
mCounter %= mInterval;
}
private:
index mInterval;
index mCounter{0};
};
struct NRTTriggerUnit: SCUnit
{
static index count(){
static index counter = -1;
return counter--;
}
index ControlOffset() { return mSpecialIndex + 1; }
index ControlSize()
{
return index(mNumInputs)
- mSpecialIndex //used for oddball cases
- 3; //id + trig + blocking;
}
static const char* name()
{
static std::string n = std::string(Wrapper::getName()) + "Trigger";
return n.c_str();
}
NRTTriggerUnit()
: mControlsIterator{mInBuf + ControlOffset(),ControlSize()}
{
mID = static_cast<index>(mInBuf[0][0]);
if(mID == -1) mID = count();
auto cmd = NonRealTime::rtalloc<CommandNew>(mWorld,mID,mWorld, mControlsIterator, this);
runAsyncCommand(mWorld, cmd, nullptr, 0, nullptr);
set_calc_function<NRTTriggerUnit, &NRTTriggerUnit::next>();
Wrapper::getInterfaceTable()->fClearUnitOutputs(this, 1);
}
~NRTTriggerUnit()
{
if(auto ptr = get(mID).lock())
{
auto cmd = NonRealTime::rtalloc<CommandFree>(mWorld,mID);
runAsyncCommand(mWorld, cmd, nullptr, 0, nullptr);
}
}
void next(int)
{
index triggerInput = static_cast<index>(mInBuf[static_cast<index>(mNumInputs) - 2][0]);
mTrigger = mTrigger || triggerInput;
if(auto ptr = get(mID).lock())
{
bool trigger = (mPreviousTrigger <= 0) && mTrigger > 0;
mPreviousTrigger = mTrigger;
mTrigger = 0;
auto& client = ptr->mClient;
if(trigger)
{
mDone = 0;
client.resetDone();
mControlsIterator.reset(1 + mInBuf); //add one for ID
auto& params = ptr->mParams;
Wrapper::setParams(this,params,mControlsIterator,true,false);
bool blocking = mInBuf[mNumInputs - 1][0] > 0;
CommandProcess* cmd = rtalloc<CommandProcess>(mWorld,mID,blocking);
runAsyncCommand(mWorld,cmd, nullptr,0, nullptr);
mRunCount++;
}
else
{
mDone = mRunCount && client.done() ;
out0(0) = mDone ? 1 : static_cast<float>(client.progress());
}
}
// else printNotFound(id);
}
private:
bool mPreviousTrigger{0};
bool mTrigger{0};
Result mResult;
impl::FloatControlsIter mControlsIterator;
index mID;
index mRunCount{0};
};
struct NRTModelQueryUnit: SCUnit
{
using Delegate = impl::RealTimeBase<Client,Wrapper>;
index ControlOffset() { return mSpecialIndex + 2; }
index ControlSize()
{
return index(mNumInputs)
- mSpecialIndex //used for oddball cases
- 2; // trig + id
}
static const char* name()
{
static std::string n = std::string(Wrapper::getName()) + "/query";
return n.c_str();
}
NRTModelQueryUnit()
//Offset controls by 1 to account for ID
: mControls{mInBuf + ControlOffset(),ControlSize()}
{
index id = static_cast<index>(in0(1));
if(auto ptr = get(id).lock())
{
auto& client = ptr->mClient;
mDelegate.init(*this,client,mControls);
set_calc_function<NRTModelQueryUnit, &NRTModelQueryUnit::next>();
Wrapper::getInterfaceTable()->fClearUnitOutputs(this, 1);
}else printNotFound(id);
}
void next(int)
{
index id = static_cast<index>(in0(1));
if(auto ptr = get(id).lock())
{
auto& client = ptr->mClient;
auto& params = ptr->mParams;
mControls.reset(mInBuf + ControlOffset());
mDelegate.next(*this,client,params,mControls);
}else printNotFound(id);
}
private:
Delegate mDelegate;
FloatControlsIter mControls;
index mID;
};
using ParamSetType = typename Client::ParamSetType;
template <size_t N, typename T>
using SetupMessageCmd = typename FluidSCMessaging<Wrapper,Client>::template SetupMessageCmd<N,T>;
template<bool, typename CommandType>
struct DefineCommandIf
{
void operator()() { }
};
template<typename CommandType>
struct DefineCommandIf<true, CommandType>
{
void operator()() {
std::cout << CommandType::name() << std::endl;
defineNRTCommand<CommandType>();
}
};
template<bool, typename UnitType>
struct RegisterUnitIf
{
void operator()(InterfaceTable*) {}
};
template<typename UnitType>
struct RegisterUnitIf<true, UnitType>
{
void operator()(InterfaceTable* ft) { registerUnit<UnitType>(ft,UnitType::name()); }
};
using IsRTQueryModel_t = typename Client::isRealTime;
static constexpr bool IsRTQueryModel = IsRTQueryModel_t::value;
static constexpr bool IsModel = Client::isModelObject::value;
public:
static void setup(InterfaceTable* ft, const char* name)
{
defineNRTCommand<CommandNew>();
DefineCommandIf<!IsRTQueryModel, CommandProcess>()();
DefineCommandIf<!IsRTQueryModel, CommandProcessNew>()();
DefineCommandIf<!IsRTQueryModel, CommandCancel>()();
DefineCommandIf<IsModel,CommandSetParams>()();
// DefineCommandIf<IsRTQueryModel,CommandGetParams>()();
defineNRTCommand<CommandFree>();
RegisterUnitIf<!IsRTQueryModel,NRTProgressUnit>()(ft);
RegisterUnitIf<!IsRTQueryModel,NRTTriggerUnit>()(ft);
RegisterUnitIf<IsRTQueryModel,NRTModelQueryUnit>()(ft);
Client::getMessageDescriptors().template iterate<SetupMessageCmd>();
}
void init(){};
private:
static Result validateParameters(ParamSetType& p)
{
auto results = p.constrainParameterValues();
for (auto& r : results)
{
if (!r.ok()) return r;
}
return {};
}
template <size_t N, typename T>
struct AssignBuffer
{
void operator()(const typename BufferT::type& p, World* w)
{
if (auto b = static_cast<SCBufferAdaptor*>(p.get())) b->assignToRT(w);
}
};
template <size_t N, typename T>
struct CleanUpBuffer
{
void operator()(const typename BufferT::type& p)
{
if (auto b = static_cast<SCBufferAdaptor*>(p.get())) b->cleanUp();
}
};
FifoMsg mFifoMsg;
char* mCompletionMessage = nullptr;
void* mReplyAddr = nullptr;
const char* mName = nullptr;
index checkThreadInterval;
index pollCounter{0};
index mPreviousTrigger{0};
bool mSynchronous{true};
Wrapper* mWrapper{static_cast<Wrapper*>(this)};
Result mResult;
};
//initialize static cache
template<typename Client, typename Wrapper>
using Cache = typename NonRealTime<Client,Wrapper>::Cache;
template<typename Client, typename Wrapper>
Cache<Client,Wrapper> NonRealTime<Client,Wrapper>::mCache{};
}
}
}

@ -0,0 +1,171 @@
#pragma once
#include <SC_PlugIn.hpp>
namespace fluid{
namespace client{
namespace impl{
template <typename Client, class Wrapper>
struct RealTimeBase
{
using HostVector = FluidTensorView<float, 1>;
using Params = typename Client::ParamSetType;
template<typename T, bool>
struct doExpectedCount;
template<typename T>
struct doExpectedCount<T, false>
{
static void count(const T& d,FloatControlsIter& c,Result& status)
{
if(!status.ok()) return;
if(c.remain())
{
index statedSize = d.fixedSize;
if(c.remain() < statedSize)
status = {Result::Status::kError,"Ran out of arguments at ", d.name};
//fastforward
for(index i=0; i < statedSize; ++i) c.next();
}
}
};
template<typename T>
struct doExpectedCount<T, true>
{
static void count(const T& d,FloatControlsIter& c,Result& status)
{
if(!status.ok()) return;
if(c.remain())
{
index statedSize = static_cast<index>(c.next());
if(c.remain() < statedSize)
status = {Result::Status::kError,"Ran out of arguments at ", d.name};
//fastforward
for(index i=0; i < statedSize; ++i) c.next();
}
}
};
template<size_t N, typename T>
struct ExpectedCount{
void operator ()(const T& descriptor,FloatControlsIter& c, Result& status)
{
doExpectedCount<T,IsSharedClientRef<typename T::type>::value>::count(descriptor,c,status);
}
};
Result expectedSize(FloatControlsIter& controls)
{
if(controls.size() < Client::getParameterDescriptors().count())
{
return {Result::Status::kError,"Fewer parameters than exepected. Got ", controls.size(), "expect at least", Client::getParameterDescriptors().count()};
}
Result countScan;
Client::getParameterDescriptors().template iterate<ExpectedCount>(
std::forward<FloatControlsIter&>(controls),
std::forward<Result&>(countScan));
return countScan;
}
// static index ControlOffset(Unit* unit) { return unit->mSpecialIndex + 1; }
// static index ControlSize(Unit* unit) { return static_cast<index>(unit->mNumInputs) - unit->mSpecialIndex - 1 -(IsModel_t<Client>::value ? 1 : 0); }
void init(SCUnit& unit, Client& client, FloatControlsIter& controls)
{
assert(!(client.audioChannelsOut() > 0 && client.controlChannelsOut() > 0) &&"Client can't have both audio and control outputs");
// consoltr.reset(unit.mInBuf + unit.mSpecialIndex + 1);
client.sampleRate(unit.fullSampleRate());
mInputConnections.reserve(asUnsigned(client.audioChannelsIn()));
mOutputConnections.reserve(asUnsigned(client.audioChannelsOut()));
mAudioInputs.reserve(asUnsigned(client.audioChannelsIn()));
mOutputs.reserve(asUnsigned(
std::max(client.audioChannelsOut(), client.controlChannelsOut())));
Result r;
if(!(r = expectedSize(controls)).ok())
{
// mCalcFunc = Wrapper::getInterfaceTable()->fClearUnitOutputs;
std::cout
<< "ERROR: " << Wrapper::getName()
<< " wrong number of arguments."
<< r.message()
<< std::endl;
return;
}
for (index i = 0; i < client.audioChannelsIn(); ++i)
{
mInputConnections.emplace_back(unit.isAudioRateIn(static_cast<int>(i)));
mAudioInputs.emplace_back(nullptr, 0, 0);
}
for (index i = 0; i < client.audioChannelsOut(); ++i)
{
mOutputConnections.emplace_back(true);
mOutputs.emplace_back(nullptr, 0, 0);
}
for (index i = 0; i < client.controlChannelsOut(); ++i)
{
mOutputs.emplace_back(nullptr, 0, 0);
}
}
void next(SCUnit& unit, Client& client,Params& params,FloatControlsIter& controls)
{
bool trig = IsModel_t<Client>::value ? !mPrevTrig && unit.in0(0) > 0 : false;
bool shouldProcess = IsModel_t<Client>::value ? trig : true;
mPrevTrig = trig;
if(shouldProcess)
{
// controls.reset(unit.mInBuf + unit.mSpecialIndex + 1);
Wrapper::setParams(&unit, params, controls);
params.constrainParameterValues();
}
for (index i = 0; i < client.audioChannelsIn(); ++i)
{
assert(i <= std::numeric_limits<int>::max());
if (mInputConnections[asUnsigned(i)])
mAudioInputs[asUnsigned(i)].reset(const_cast<float*>(unit.in(static_cast<int>(i))), 0,
unit.fullBufferSize());
}
for (index i = 0; i < client.audioChannelsOut(); ++i)
{
assert(i <= std::numeric_limits<int>::max());
if (mOutputConnections[asUnsigned(i)])
mOutputs[asUnsigned(i)].reset(unit.out(static_cast<int>(i)), 0,
unit.fullBufferSize());
}
for (index i = 0; i < client.controlChannelsOut(); ++i)
{
assert(i <= std::numeric_limits<int>::max());
mOutputs[asUnsigned(i)].reset(unit.out(static_cast<int>(i)), 0, 1);
}
client.process(mAudioInputs, mOutputs, mContext);
}
private:
std::vector<bool> mInputConnections;
std::vector<bool> mOutputConnections;
std::vector<HostVector> mAudioInputs;
std::vector<HostVector> mOutputs;
FluidContext mContext;
bool mPrevTrig;
};
}
}
}

@ -0,0 +1,168 @@
#pragma once
#include "ArgsFromClient.hpp"
#include "Meta.hpp"
#include "RealTimeBase.hpp"
#include <clients/common/FluidBaseClient.hpp>
#include <SC_PlugIn.hpp>
// Real Time Processor
namespace fluid {
namespace client {
namespace impl {
template <typename Client, class Wrapper>
class RealTime : public SCUnit
{
using Delegate = impl::RealTimeBase<Client,Wrapper>;
using Params = typename Client::ParamSetType;
public:
// static index ControlOffset(Unit* unit) { return Delegate::ControlOffset(unit); }
// static index ControlSize(Unit* unit) { return Delegate::ControlSize(unit); }
static index ControlOffset(Unit* unit) { return unit->mSpecialIndex + 1; }
static index ControlSize(Unit* unit)
{
return static_cast<index>(unit->mNumInputs)
- unit->mSpecialIndex
- 1
- (IsModel_t<Client>::value ? 1 : 0);
}
static void setup(InterfaceTable* ft, const char* name)
{
ft->fDefineUnitCmd(name, "latency", doLatency);
registerUnit<RealTime>(ft,name);
}
static void doLatency(Unit* unit, sc_msg_iter*)
{
float l[]{
static_cast<float>(static_cast<RealTime*>(unit)->mClient.latency())
};
auto ft = Wrapper::getInterfaceTable();
std::stringstream ss;
ss << '/' << Wrapper::getName() << "_latency";
std::cout << ss.str() << std::endl;
ft->fSendNodeReply(&unit->mParent->mNode, -1, ss.str().c_str(), 1, l);
}
RealTime()
: mControls{mInBuf + ControlOffset(this),ControlSize(this)},
mClient{Wrapper::setParams(this, mParams, mControls)}
{
init();
}
void init()
{
// auto& client = mClient;
mDelegate.init(*this,mClient,mControls);
mCalcFunc = make_calc_function<RealTime, &RealTime::next>();
Wrapper::getInterfaceTable()->fClearUnitOutputs(this, 1);
// assert(
// !(client.audioChannelsOut() > 0 && client.controlChannelsOut() > 0) &&
// "Client can't have both audio and control outputs");
//
// Result r;
// if(!(r = expectedSize(mWrapper->mControlsIterator)).ok())
// {
// mCalcFunc = Wrapper::getInterfaceTable()->fClearUnitOutputs;
// std::cout
// << "ERROR: " << Wrapper::getName()
// << " wrong number of arguments."
// << r.message()
// << std::endl;
// return;
// }
//
// mWrapper->mControlsIterator.reset(mInBuf + mSpecialIndex + 1);
//
// client.sampleRate(fullSampleRate());
// mInputConnections.reserve(asUnsigned(client.audioChannelsIn()));
// mOutputConnections.reserve(asUnsigned(client.audioChannelsOut()));
// mAudioInputs.reserve(asUnsigned(client.audioChannelsIn()));
// mOutputs.reserve(asUnsigned(
// std::max(client.audioChannelsOut(), client.controlChannelsOut())));
//
// for (index i = 0; i < client.audioChannelsIn(); ++i)
// {
// mInputConnections.emplace_back(isAudioRateIn(static_cast<int>(i)));
// mAudioInputs.emplace_back(nullptr, 0, 0);
// }
//
// for (index i = 0; i < client.audioChannelsOut(); ++i)
// {
// mOutputConnections.emplace_back(true);
// mOutputs.emplace_back(nullptr, 0, 0);
// }
//
// for (index i = 0; i < client.controlChannelsOut(); ++i)
// { mOutputs.emplace_back(nullptr, 0, 0); }
//
// mCalcFunc = make_calc_function<RealTime, &RealTime::next>();
// Wrapper::getInterfaceTable()->fClearUnitOutputs(this, 1);
}
void next(int)
{
// auto& client = mWrapper->client();
// auto& params = mWrapper->params();
// const Unit* unit = this;
mControls.reset(mInBuf + ControlOffset(this));
mDelegate.next(*this,mClient,mParams,mControls);
// bool trig = IsModel_t<Client>::value ? !mPrevTrig && in0(0) > 0 : false;
// bool shouldProcess = IsModel_t<Client>::value ? trig : true;
// mPrevTrig = trig;
//
// if(shouldProcess)
// {
// mWrapper->mControlsIterator.reset(mInBuf + mSpecialIndex +
// 1); // mClient.audioChannelsIn());
// Wrapper::setParams(mWrapper,
// params, mWrapper->mControlsIterator); // forward on inputs N + audio inputs as params
// params.constrainParameterValues();
// }
// for (index i = 0; i < client.audioChannelsIn(); ++i)
// {
// if (mInputConnections[asUnsigned(i)])
// { mAudioInputs[asUnsigned(i)].reset(IN(i), 0, fullBufferSize()); }
// }
// for (index i = 0; i < client.audioChannelsOut(); ++i)
// {
// assert(i <= std::numeric_limits<int>::max());
// if (mOutputConnections[asUnsigned(i)])
// mOutputs[asUnsigned(i)].reset(out(static_cast<int>(i)), 0,
// fullBufferSize());
// }
// for (index i = 0; i < client.controlChannelsOut(); ++i)
// {
// assert(i <= std::numeric_limits<int>::max());
// mOutputs[asUnsigned(i)].reset(out(static_cast<int>(i)), 0, 1);
// }
// client.process(mAudioInputs, mOutputs, mContext);
// // }
}
private:
Delegate mDelegate;
FloatControlsIter mControls;
Params mParams{Client::getParameterDescriptors()};
Client mClient;
// std::vector<bool> mInputConnections;
// std::vector<bool> mOutputConnections;
// std::vector<HostVector> mAudioInputs;
// std::vector<HostVector> mOutputs;
// FluidContext mContext;
Wrapper* mWrapper{static_cast<Wrapper*>(this)};
// bool mPrevTrig;
};
}
}
}
Loading…
Cancel
Save